Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.M...Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.展开更多
This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. ...This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane.展开更多
Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,m...Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration.展开更多
The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects ...The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.展开更多
To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro de...To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro degradation,cytotoxicity,antibacterial effect and in vivo regenerative performance for the membrane with and without Ca-P coating were evaluated.After coating,the membrane exhibited an enhance hydrophilicity and corrosion resistance,showed good in vitro cytocompatibility upon MC3T3E-1 cells,and exhibited excellent antibacterial effect against E.coli,Staphylococcus epidermis and Staphylococcus aureus,simultaneously.In vivo experiment using the rabbit calvarial defect model confirmed that Ca-P coated MZG membrane underwent progressive degradation without inflammatory reaction and significantly improved the new bone formation at both 1.5 and 3 months after the surgery.All the results strongly indicate that MZG with Ca-P coating have great potential for clinical application as GBR membranes.展开更多
BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmen...BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.展开更多
After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant rest...After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant restoration.In order to control the absorption and promote the repair and regeneration of alveolar ridge,a method of implanting guided bone regeneration(GBR)membranes at the extraction site is often used.In this study,silk fibroin(SF)and poly-L-lactide lactone(PLCL)were used to prepare bilayered guided bone regeneration membranes,and its morphology,hydrophilicity,surface roughness and mechanical properties were studied.At the same time,the drug release behaviors and cell compatibility of the bilayered membranes were studied.The results showed that SF/PLCL bi-layered membranes had good mechanical properties and surface hydrophilicity,and the drug-loaded bi-layered membranes had good cell compatibility.The bilayered membranes fabricated in this study are of potential for applying in the oral health field to promote bone regeneration.展开更多
BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation...BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation of treatment of jaw cysts,more options are available for treatment of postoperative bone defect of jaw cysts.Guided bone regeneration(GBR)places biomaterials in the bone defect,and then uses biofilm to separate the proliferative soft tissue and the slow-growing bone tissue to maintain the space for bone regeneration,which is widely used in the field of implantology.AIM To observe the clinical effect of GBR in repairing bone defect after enucleation of small and medium-sized odontogenic jaw cysts.METHODS From June 2018 to September 2020,13 patients(7 male,6 female)with odontogenic jaw cysts were treated in the Department of Oral Surgery,Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine.Adults without hypertension,heart disease,diabetes or other systemic diseases were selected.The diagnosis was based on the final pathological results:11 cases were diagnosed as apical cysts,one as primordial cyst,and one as dentigerous cyst.The lesions were located in the maxilla in seven cases,and in the mandible in six cases.All cases were treated with the same method of enucleation combined with GBR.RESULTS Three to four months after the operation,the boundary between the implant site and the surrounding normal stroma was not obvious in patients with small-sized odontogenic jaw cysts.The patients with tooth defects were treated with implant after 6 mo.For the patients with medium-sized odontogenic jaw cysts,the density of the center of the implant area was close to the normal mass at 6 mo after surgery,and there was a clear boundary between the periphery of the implant area and the normal mass.The boundary between the periphery of the implant area and the normal mass was blurred at 8-9 mo after surgery.Patients with tooth defects were treated with implants at>6 mo after the operation.CONCLUSION Enucleation combined with guided bone regeneration in small and medium-sized odontogenic jaw cysts can shorten the time of osteogenesis,increase the amount of new bone formation,reduce complications,and improve quality of life.展开更多
Hydrothermally synthesized nano-hydroxyapatite(n-HA ) varmg m wetght Jrom 10% to 30% was used us filler to make guided bone regeneration ( GBR ) composite membranes with navel aliphatic polyesteramide ( PEA ). T...Hydrothermally synthesized nano-hydroxyapatite(n-HA ) varmg m wetght Jrom 10% to 30% was used us filler to make guided bone regeneration ( GBR ) composite membranes with navel aliphatic polyesteramide ( PEA ). The structare and properties of PEA and its n- HA composites were investigated through TEM, IR, XRD, SEM and EDX. The shape and size of the n- HA crystals are similar to the apatite crystals in nataral bone. Molecule interactions are present between the n- HA and PEA in the compasite, which allows the uniform dispersion of n- HA in PEA matrix. This contributes enhanced mechanical property and bioactivhy to the compasite. The cytacompatibilhy of the composites has been investigated by culturing osteoblasts on the membranes. Good cell attachment and proliferation manner were observed on the membranes after 1 week. These results suggest that the PEA/ n-HA compasite membrane prepared in this study may serve us barrier membranes for guided bone regeneration and potential candidate scaffold for tissue engineering.展开更多
[Basckground]This case report presented a methodology for immediate implantation in the esthetic zone with a facial bone defect along with flap surgery,guided bone regeneration,and non-submerged healing.[Case presenta...[Basckground]This case report presented a methodology for immediate implantation in the esthetic zone with a facial bone defect along with flap surgery,guided bone regeneration,and non-submerged healing.[Case presentation]A 27-year-old female patient was complaining of the aesthetic complication that was caused via metallic staining of the neck of ceramic crowns in the maxillary right anterior region for one year.She has experienced immediate implantation along with flap surgery,guided bone regeneration(GBR),and non-submerged healing.The torque of the implant reached to the 35 N·cm to confirm primary stability.Six months after surgery,the healing abutment and the implant were fixed,the gingiva was healthy in the surgical area,and the nearby teeth and the opposite teeth were normal.[Results]The results of cone-beam computer tomography(CBCT)revealed that bone defects were filled with the newly formed bone.At the same time,the final impressions accomplished,and an all-ceramic crown was fit-placed.As a whole,the patient satisfaction rate was high.[Conclusions]Immediate implant placement with flap surgery,GBR,and non-submerged healing with a facial bone wall defect in the esthetic zone is an achievable process.展开更多
Objective: To study the effect of concentrated growth factor (CGF) combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe ...Objective: To study the effect of concentrated growth factor (CGF) combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe periodontitis who were treated in Stomatology Department of Shenmu Hospital between May 2014 and February 2017 were selected as the research subjects and randomly divided into two groups, surgery + CGF group received concentrated growth factor combined with guided bone regeneration, and pure surgery group received guided bone regeneration. The contents of inflammatory response, cell proliferation and bone resorption markers in gingival crevicular fluid were determined 1 week after treatment. Results: 1 week after treatment, HMGB1, ICAM1, E-selectin, Smac, FasL, Caspase-8, Caspase-9, Caspase-3, RANKL and NTX contents in gingival crevicular fluid of surgery + CGF group were significantly lower than those of pure surgery group while PD-L1, hBD-3, Wnt3a, BGP and OPG contents were significantly higher than those of pure surgery group. Conclusion:Concentrated growth factor combined with guided bone regeneration for severe periodontitis can inhibit inflammatory response, apoptosis and bone resorption, which is beneficial to the reconstruction of periodontal tissue.展开更多
Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral ...Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral and maxillofacial bone defects but is still unsatisfied in the treatment of long bone defects.Here,we successfully fabricated a bilayer mineralized collagen/collagen(MC/Col)-GBR membrane with excellent osteoinductive and barrier function by coating the MC particles prepared via in situ biomimetic mineralization process on one side of a sheet-like pure collagen layer.The aim of the present study was to investigate the physicochemical properties and biological functions of the MC/Col film,and to further evaluate its bone regeneration efficiency in large bone defect repair.Fouriertransform infrared spectra and X-ray diffraction patterns confirmed the presence of both hydroxyapatite and collagen phase in the MC/Col film,as well as the chemical interaction between them.stereo microscope,scanning electron microscopy and atomic force microscope showed the uniform distribution of MC particles in the MC/Col film,resulting in a rougher surface compared to the pure Col film.The quantitative analysis of surface contact angle,light transmittance and tensile strength demonstrated that the MC/Col film have better hydrophilicity,mechanical properties,light-barrier properties,respectively.In vitro macrophage co-culture experiments showed that the MC/Col film can effectively inhibit macrophage proliferation and fusion,reducing fibrous capsule formation.In vivo bone repair assessment of a rabbit critical segmental radial defect proved that the MC/Col film performed better than other groups in promoting bone repair and regeneration due to their unique dual osteoinductive/barrier function.These findings provided evidence that MC/Col film has a great clinical potential for effective bone defect repair.展开更多
Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as lo...Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as local delivery carriers for different biologic mediators. Simvastatin, a drug commonly used for lowering cholesterol, has demonstrated promising bone regenerative capability. The aim of this study was to evaluate simvastatin loaded chitosan nanofiber membranes for guided bone regeneration (GBR) applications and their ability to enhance bone formation in rat calvarial defects. Nanofibrous chitosan membranes with random fiber orientation were fabricated by electrospinning technique and loaded with 0.25 mg of simvastatin under sterile conditions. One membrane was implanted subperiosteally to cover an 8 mm diameter critical size calvarial defect. Two groups: 1) Control: non-loaded chitosan membranes;2) Experimental: chitosan membranes loaded with 0.25 mg of simvastatin were evaluated histologically and via micro-computed tomography (micro-CT) for bone formation at 4 and 8 weeks time points (n = 5/group per time point). Both groups exhibited good biocompatibility with only mild or moderate inflammatory response during the healing process. Histologic and micro-CT evaluations confirmed bone formation in calvarial defects as early as 4 weeks using control and experimental membranes. In addition, newly-formed bony bridges consolidating calvarial defects histologically along with partial radiographic defect coverage were observed at 8 weeks in both groups. Although control and experimental groups demonstrated no significant statistical differences in results of bone formation, biodegradable chitosan nanofiber membranes loaded with simvastatin showed a promising regenerative potential as a barrier material for guided bone regeneration applications.展开更多
BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biologica...BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biological factor for bone remodeling,and growth factors may enhance the repair process.AIM To evaluate the gene expression of cytokines(IL-1β,IL-6,IL-10 and TNF-α),markers of osteoclastogenesis(RANK,RANKL and OPG)and MMPs(MMP-1,MMP-2,MMP-8 and MMP-13)from the treatment of melatonin associated with an osteogenic membrane and rhBMP-2 on the recovery of a bone injury.METHODS Sixty-four rats were used and divided into 9 experimental groups and were formed according to the treatment carried out in the region of the bone lesion,which varied between the combination of 1,10 and 100μmol/L of melatonin.Gene Expression analysis was performed using real time-PCR by reading the concentration of total RNA and reverse transcription.RESULTS There were differences between groups when compared with clot or scaffold control,and improvement with a higher concentration of melatonin or rhBMP-2.The combination melatonin(1μg)with 5μg of rhBMP-2,using the guided bone regeneration technique,demonstrated some effects,albeit mild,on bone repair of critical bone defects.CONCLUSION This indicates that the approach for administering these substances needs to be reassessed,with the goal of ensuring their direct application to the affected area.Therefore,future research must be carried out,seeking to produce materials with these ideal characteristics.展开更多
Guided bone regeneration is one of the most common surgical treatment modalities performed when an additional alveolar bone is required to stabilize dental implants in partially and fully edentulous patients.The addit...Guided bone regeneration is one of the most common surgical treatment modalities performed when an additional alveolar bone is required to stabilize dental implants in partially and fully edentulous patients.The addition of a barrier membrane prevents non-osteogenic tissue invasion into the bone cavity,which is key to the success of guided bone regeneration.Barrier membranes can be broadly classified as non-resorbable or resorbable.In contrast to non-resorbable membranes,resorbable barrier membranes do not require a second surgical procedure for membrane removal.Commercially available resorbable barrier membranes are either synthetically manufactured or derived from xenogeneic collagen.Although collagen barrier membranes have become increasingly popular amongst clinicians,largely due to their superior handling qualities compared to other commercially available barrier membranes,there have been no studies to date that have compared commercially available porcine-derived collagen membranes with respect to surface topography,collagen fibril structure,physical barrier property,and immunogenic composition.This study evaluated three commercially available non-crosslinked porcine-derived collagen membranes(Striate+TM,Bio-Gide®and CreosTM Xenoprotect).Scanning electron microscopy revealed similar collagen fibril distribution on both the rough and smooth sides of the membranes as well as the similar diameters of collagen fibrils.However,D-periodicity of the fibrillar collagen is significantly different among the membranes,with Striate+TM membrane having the closest D-periodicity to native collagen I.This suggests that there is less deformation of collagen during manufacturing process.All collagen membranes showed superior barrier property evidenced by blocking 0.2–16.4µm beads passing through the membranes.To examine the immunogenic agents in these membranes,we examined the membranes for the presence of DNA and alpha-gal by immunohistochemistry.No alpha-gal or DNA was detected in any membranes.However,using a more sensitive detection method(real-time polymerase chain reaction),a relatively strong DNA signal was detected in Bio-Gide®membrane,but not Striate+TM and CreosTM Xenoprotect membranes.Our study concluded that these membranes are similar but not identical,probably due to the different ages and sources of porcine tissues,as well as different manufacturing processes.We recommend further studies to understand the clinical implications of these findings.展开更多
A novel calcium-phosphate(Ca–P)-coated magnesium(Mg) membrane used for guided bone regeneration(GBR) was studied.The microstructural characterization, electrochemical test, immersion test,fluorescence labeling analys...A novel calcium-phosphate(Ca–P)-coated magnesium(Mg) membrane used for guided bone regeneration(GBR) was studied.The microstructural characterization, electrochemical test, immersion test,fluorescence labeling analysis and histopathological evaluation were carried out.The results showed that Ca–P coating could obviously improve the corrosion resistance of the pure Mg membrane.The in vivo results showed that Mg membrane coated with Ca–P would take 8 weeks to be completely absorbed.However, Mg membrane was completely absorbed within 1 week.Histopathological evaluation showed that the Ca–P-coated Mg membranes were significantly better than Ti membranes at the early implantation time(4 weeks), and with the time prolonging,the performance of the coated Mg membrane was not as good as pure Ti membranes(but still better than blank group) at 8 and 12 weeks.The coated biodegradable Mg membrane had a good promising application in GBR.But further studies have to be done to further decrease the degradation rate of pure Mg membrane.展开更多
文摘Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.
文摘This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane.
基金Funded by the National Natural Science Foundation of China(No.30870610)the National Glycoengineering Research Center,ShandongUniversity (No.NGRC2009F02)the Shandong Provincial Natural ScienceFoundation (No. Y2008C107)
文摘Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration.
基金King Saud University,through Vice Deanship of Research Chairs
文摘The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.
基金This work was supported by National Natural Sci-ence Foundation of China(No.81600827,No.U1804251,No.81600827 and No.51971134)the National Key R&D program of China(No.2016YFC1102103)+1 种基金the Science and Technology Commission of Shanghai(18441908000)Shanghai Jiao Tong University Biomedi-cal Engineering Research Fund(YG2019ZDA02).Dr.Jiawen Si wants to thank his wife Qifan Hu and daughter Jinnuo Si for their support,care and love over the past years,and say“thank god for sending you to me on angel’s wings”.
文摘To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro degradation,cytotoxicity,antibacterial effect and in vivo regenerative performance for the membrane with and without Ca-P coating were evaluated.After coating,the membrane exhibited an enhance hydrophilicity and corrosion resistance,showed good in vitro cytocompatibility upon MC3T3E-1 cells,and exhibited excellent antibacterial effect against E.coli,Staphylococcus epidermis and Staphylococcus aureus,simultaneously.In vivo experiment using the rabbit calvarial defect model confirmed that Ca-P coated MZG membrane underwent progressive degradation without inflammatory reaction and significantly improved the new bone formation at both 1.5 and 3 months after the surgery.All the results strongly indicate that MZG with Ca-P coating have great potential for clinical application as GBR membranes.
文摘BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
基金Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions,China(No.19KJA610004)Natural Science Foundation of Jiangsu Province,China(No.BK20161254)+1 种基金China Postdoctoral Science Foundation(No.2019M651947)Mandatory Projects of Nantong Municipal Science and Technology Plan,China(No.JC2018004)
文摘After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant restoration.In order to control the absorption and promote the repair and regeneration of alveolar ridge,a method of implanting guided bone regeneration(GBR)membranes at the extraction site is often used.In this study,silk fibroin(SF)and poly-L-lactide lactone(PLCL)were used to prepare bilayered guided bone regeneration membranes,and its morphology,hydrophilicity,surface roughness and mechanical properties were studied.At the same time,the drug release behaviors and cell compatibility of the bilayered membranes were studied.The results showed that SF/PLCL bi-layered membranes had good mechanical properties and surface hydrophilicity,and the drug-loaded bi-layered membranes had good cell compatibility.The bilayered membranes fabricated in this study are of potential for applying in the oral health field to promote bone regeneration.
基金Supported by the National Natural Science Foundation of China,No. 31800816Fundamental Research Program Funding of the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No. JYZZ109
文摘BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation of treatment of jaw cysts,more options are available for treatment of postoperative bone defect of jaw cysts.Guided bone regeneration(GBR)places biomaterials in the bone defect,and then uses biofilm to separate the proliferative soft tissue and the slow-growing bone tissue to maintain the space for bone regeneration,which is widely used in the field of implantology.AIM To observe the clinical effect of GBR in repairing bone defect after enucleation of small and medium-sized odontogenic jaw cysts.METHODS From June 2018 to September 2020,13 patients(7 male,6 female)with odontogenic jaw cysts were treated in the Department of Oral Surgery,Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine.Adults without hypertension,heart disease,diabetes or other systemic diseases were selected.The diagnosis was based on the final pathological results:11 cases were diagnosed as apical cysts,one as primordial cyst,and one as dentigerous cyst.The lesions were located in the maxilla in seven cases,and in the mandible in six cases.All cases were treated with the same method of enucleation combined with GBR.RESULTS Three to four months after the operation,the boundary between the implant site and the surrounding normal stroma was not obvious in patients with small-sized odontogenic jaw cysts.The patients with tooth defects were treated with implant after 6 mo.For the patients with medium-sized odontogenic jaw cysts,the density of the center of the implant area was close to the normal mass at 6 mo after surgery,and there was a clear boundary between the periphery of the implant area and the normal mass.The boundary between the periphery of the implant area and the normal mass was blurred at 8-9 mo after surgery.Patients with tooth defects were treated with implants at>6 mo after the operation.CONCLUSION Enucleation combined with guided bone regeneration in small and medium-sized odontogenic jaw cysts can shorten the time of osteogenesis,increase the amount of new bone formation,reduce complications,and improve quality of life.
文摘Hydrothermally synthesized nano-hydroxyapatite(n-HA ) varmg m wetght Jrom 10% to 30% was used us filler to make guided bone regeneration ( GBR ) composite membranes with navel aliphatic polyesteramide ( PEA ). The structare and properties of PEA and its n- HA composites were investigated through TEM, IR, XRD, SEM and EDX. The shape and size of the n- HA crystals are similar to the apatite crystals in nataral bone. Molecule interactions are present between the n- HA and PEA in the compasite, which allows the uniform dispersion of n- HA in PEA matrix. This contributes enhanced mechanical property and bioactivhy to the compasite. The cytacompatibilhy of the composites has been investigated by culturing osteoblasts on the membranes. Good cell attachment and proliferation manner were observed on the membranes after 1 week. These results suggest that the PEA/ n-HA compasite membrane prepared in this study may serve us barrier membranes for guided bone regeneration and potential candidate scaffold for tissue engineering.
文摘[Basckground]This case report presented a methodology for immediate implantation in the esthetic zone with a facial bone defect along with flap surgery,guided bone regeneration,and non-submerged healing.[Case presentation]A 27-year-old female patient was complaining of the aesthetic complication that was caused via metallic staining of the neck of ceramic crowns in the maxillary right anterior region for one year.She has experienced immediate implantation along with flap surgery,guided bone regeneration(GBR),and non-submerged healing.The torque of the implant reached to the 35 N·cm to confirm primary stability.Six months after surgery,the healing abutment and the implant were fixed,the gingiva was healthy in the surgical area,and the nearby teeth and the opposite teeth were normal.[Results]The results of cone-beam computer tomography(CBCT)revealed that bone defects were filled with the newly formed bone.At the same time,the final impressions accomplished,and an all-ceramic crown was fit-placed.As a whole,the patient satisfaction rate was high.[Conclusions]Immediate implant placement with flap surgery,GBR,and non-submerged healing with a facial bone wall defect in the esthetic zone is an achievable process.
文摘Objective: To study the effect of concentrated growth factor (CGF) combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe periodontitis who were treated in Stomatology Department of Shenmu Hospital between May 2014 and February 2017 were selected as the research subjects and randomly divided into two groups, surgery + CGF group received concentrated growth factor combined with guided bone regeneration, and pure surgery group received guided bone regeneration. The contents of inflammatory response, cell proliferation and bone resorption markers in gingival crevicular fluid were determined 1 week after treatment. Results: 1 week after treatment, HMGB1, ICAM1, E-selectin, Smac, FasL, Caspase-8, Caspase-9, Caspase-3, RANKL and NTX contents in gingival crevicular fluid of surgery + CGF group were significantly lower than those of pure surgery group while PD-L1, hBD-3, Wnt3a, BGP and OPG contents were significantly higher than those of pure surgery group. Conclusion:Concentrated growth factor combined with guided bone regeneration for severe periodontitis can inhibit inflammatory response, apoptosis and bone resorption, which is beneficial to the reconstruction of periodontal tissue.
基金supported by the Department of Science and Technology of Sichuan Province(23ZDYF2641)Health Commission of Sichuan Province(2023-118)+2 种基金Chengdu Science and Technology Program(2021-YF08-00107-GX)Department of Science and Technology of Chengdu(2023-GH02-00075-HZ)the Fundamental Research Funds for the Central Universities(20826041G4189).
文摘Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral and maxillofacial bone defects but is still unsatisfied in the treatment of long bone defects.Here,we successfully fabricated a bilayer mineralized collagen/collagen(MC/Col)-GBR membrane with excellent osteoinductive and barrier function by coating the MC particles prepared via in situ biomimetic mineralization process on one side of a sheet-like pure collagen layer.The aim of the present study was to investigate the physicochemical properties and biological functions of the MC/Col film,and to further evaluate its bone regeneration efficiency in large bone defect repair.Fouriertransform infrared spectra and X-ray diffraction patterns confirmed the presence of both hydroxyapatite and collagen phase in the MC/Col film,as well as the chemical interaction between them.stereo microscope,scanning electron microscopy and atomic force microscope showed the uniform distribution of MC particles in the MC/Col film,resulting in a rougher surface compared to the pure Col film.The quantitative analysis of surface contact angle,light transmittance and tensile strength demonstrated that the MC/Col film have better hydrophilicity,mechanical properties,light-barrier properties,respectively.In vitro macrophage co-culture experiments showed that the MC/Col film can effectively inhibit macrophage proliferation and fusion,reducing fibrous capsule formation.In vivo bone repair assessment of a rabbit critical segmental radial defect proved that the MC/Col film performed better than other groups in promoting bone repair and regeneration due to their unique dual osteoinductive/barrier function.These findings provided evidence that MC/Col film has a great clinical potential for effective bone defect repair.
文摘Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as local delivery carriers for different biologic mediators. Simvastatin, a drug commonly used for lowering cholesterol, has demonstrated promising bone regenerative capability. The aim of this study was to evaluate simvastatin loaded chitosan nanofiber membranes for guided bone regeneration (GBR) applications and their ability to enhance bone formation in rat calvarial defects. Nanofibrous chitosan membranes with random fiber orientation were fabricated by electrospinning technique and loaded with 0.25 mg of simvastatin under sterile conditions. One membrane was implanted subperiosteally to cover an 8 mm diameter critical size calvarial defect. Two groups: 1) Control: non-loaded chitosan membranes;2) Experimental: chitosan membranes loaded with 0.25 mg of simvastatin were evaluated histologically and via micro-computed tomography (micro-CT) for bone formation at 4 and 8 weeks time points (n = 5/group per time point). Both groups exhibited good biocompatibility with only mild or moderate inflammatory response during the healing process. Histologic and micro-CT evaluations confirmed bone formation in calvarial defects as early as 4 weeks using control and experimental membranes. In addition, newly-formed bony bridges consolidating calvarial defects histologically along with partial radiographic defect coverage were observed at 8 weeks in both groups. Although control and experimental groups demonstrated no significant statistical differences in results of bone formation, biodegradable chitosan nanofiber membranes loaded with simvastatin showed a promising regenerative potential as a barrier material for guided bone regeneration applications.
文摘BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biological factor for bone remodeling,and growth factors may enhance the repair process.AIM To evaluate the gene expression of cytokines(IL-1β,IL-6,IL-10 and TNF-α),markers of osteoclastogenesis(RANK,RANKL and OPG)and MMPs(MMP-1,MMP-2,MMP-8 and MMP-13)from the treatment of melatonin associated with an osteogenic membrane and rhBMP-2 on the recovery of a bone injury.METHODS Sixty-four rats were used and divided into 9 experimental groups and were formed according to the treatment carried out in the region of the bone lesion,which varied between the combination of 1,10 and 100μmol/L of melatonin.Gene Expression analysis was performed using real time-PCR by reading the concentration of total RNA and reverse transcription.RESULTS There were differences between groups when compared with clot or scaffold control,and improvement with a higher concentration of melatonin or rhBMP-2.The combination melatonin(1μg)with 5μg of rhBMP-2,using the guided bone regeneration technique,demonstrated some effects,albeit mild,on bone repair of critical bone defects.CONCLUSION This indicates that the approach for administering these substances needs to be reassessed,with the goal of ensuring their direct application to the affected area.Therefore,future research must be carried out,seeking to produce materials with these ideal characteristics.
文摘Guided bone regeneration is one of the most common surgical treatment modalities performed when an additional alveolar bone is required to stabilize dental implants in partially and fully edentulous patients.The addition of a barrier membrane prevents non-osteogenic tissue invasion into the bone cavity,which is key to the success of guided bone regeneration.Barrier membranes can be broadly classified as non-resorbable or resorbable.In contrast to non-resorbable membranes,resorbable barrier membranes do not require a second surgical procedure for membrane removal.Commercially available resorbable barrier membranes are either synthetically manufactured or derived from xenogeneic collagen.Although collagen barrier membranes have become increasingly popular amongst clinicians,largely due to their superior handling qualities compared to other commercially available barrier membranes,there have been no studies to date that have compared commercially available porcine-derived collagen membranes with respect to surface topography,collagen fibril structure,physical barrier property,and immunogenic composition.This study evaluated three commercially available non-crosslinked porcine-derived collagen membranes(Striate+TM,Bio-Gide®and CreosTM Xenoprotect).Scanning electron microscopy revealed similar collagen fibril distribution on both the rough and smooth sides of the membranes as well as the similar diameters of collagen fibrils.However,D-periodicity of the fibrillar collagen is significantly different among the membranes,with Striate+TM membrane having the closest D-periodicity to native collagen I.This suggests that there is less deformation of collagen during manufacturing process.All collagen membranes showed superior barrier property evidenced by blocking 0.2–16.4µm beads passing through the membranes.To examine the immunogenic agents in these membranes,we examined the membranes for the presence of DNA and alpha-gal by immunohistochemistry.No alpha-gal or DNA was detected in any membranes.However,using a more sensitive detection method(real-time polymerase chain reaction),a relatively strong DNA signal was detected in Bio-Gide®membrane,but not Striate+TM and CreosTM Xenoprotect membranes.Our study concluded that these membranes are similar but not identical,probably due to the different ages and sources of porcine tissues,as well as different manufacturing processes.We recommend further studies to understand the clinical implications of these findings.
基金financially supported by the Key Program of China on Biomedical Materials Research and Tissue and Organ Replacement (Nos.2016YFC1101804 and 2016YFC1100604)Shenyang Key R&D and Technology Transfer Program (No.Z18-0-027)
文摘A novel calcium-phosphate(Ca–P)-coated magnesium(Mg) membrane used for guided bone regeneration(GBR) was studied.The microstructural characterization, electrochemical test, immersion test,fluorescence labeling analysis and histopathological evaluation were carried out.The results showed that Ca–P coating could obviously improve the corrosion resistance of the pure Mg membrane.The in vivo results showed that Mg membrane coated with Ca–P would take 8 weeks to be completely absorbed.However, Mg membrane was completely absorbed within 1 week.Histopathological evaluation showed that the Ca–P-coated Mg membranes were significantly better than Ti membranes at the early implantation time(4 weeks), and with the time prolonging,the performance of the coated Mg membrane was not as good as pure Ti membranes(but still better than blank group) at 8 and 12 weeks.The coated biodegradable Mg membrane had a good promising application in GBR.But further studies have to be done to further decrease the degradation rate of pure Mg membrane.