期刊文献+
共找到7,996篇文章
< 1 2 250 >
每页显示 20 50 100
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
1
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
2
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring Data fusion Terrestrial laser scanning(TLS) unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding
3
作者 HONG Weiyuan LI Ziqiu +5 位作者 FENG Xiangqian QIN Jinhua WANG Aidong JIN Shichao WANG Danying CHEN Song 《Rice science》 SCIE CSCD 2024年第5期617-628,I0066-I0070,共17页
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat... Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work. 展开更多
关键词 phenological date plant height unmanned aerial vehicle machine learning rice breeding
下载PDF
Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems
4
作者 Ting Chen Shuna Jiang +4 位作者 Xin Fan Jianchuan Xia Xiujuan Zhang Chuanwen Luo Yi Hong 《Computers, Materials & Continua》 SCIE EI 2024年第11期2195-2217,共23页
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is ... In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain. 展开更多
关键词 unmanned aerial vehicles blockchain finite blocklength block transmission alternating optimization
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
5
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Unmanned aerial vehicles towards future Industrial Internet:Roles and opportunities
6
作者 Linpei Li Chunlei Sun +5 位作者 Jiahao Huo Yu Su Lei Sun Yao Huang Ning Wang Haijun Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第4期873-883,共11页
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese... Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed. 展开更多
关键词 unmanned aerial vehicles(UAVs) UAV-assisted communications Industrial Internet
下载PDF
Unmanned Aerial Vehicle Inspection Routing and Scheduling for Engineering Management
7
作者 Lu Zhen Zhiyuan Yang +2 位作者 Gilbert Laporte Wen Yi Tianyi Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期223-239,共17页
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ... Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency. 展开更多
关键词 Engineering management unmanned aerial vehicle Inspection routing and scheduling OPTIMIZATION Mixed-integer linear programming model Variable neighborhood search metaheuristic
下载PDF
Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks
8
作者 Ping Li Kefeng Guo +2 位作者 Feng Zhou XuelingWang Yuzhen Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1849-1864,共16页
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e... Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings. 展开更多
关键词 Integrated satellite unmanned aerial vehicle relay networks reconfigurable intelligent surface average secrecy capacity(ASC) asymptotic ASC
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
9
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 unmanned aerial vehicle(UAV) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Ground target localization of unmanned aerial vehicle based on scene matching
10
作者 ZHANG Yan CHEN Yukun +2 位作者 HUANG He TANG Simi LI Zhi 《High Technology Letters》 EI CAS 2024年第3期231-243,共13页
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ... In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment. 展开更多
关键词 scene matching basemap adjustment feature registration random sample con-sensus(RANSAC) unmanned aerial vehicle(UAV)
下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:24
11
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
下载PDF
Research on Water-Exit and Take-off Process for Morphing Unmanned Submersible Aerial Vehicle 被引量:10
12
作者 HU Jun-hua XU Bao-wei +3 位作者 FENG Jin-fu QI Duo YANG Jian WANG Cong 《China Ocean Engineering》 SCIE EI CSCD 2017年第2期202-209,共8页
This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that th... This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory. 展开更多
关键词 Morphing unmanned Submersible aerial vehicle (MUSAV) water-to-air process dynamic model flight control
下载PDF
Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle 被引量:5
13
作者 Shao Zhijian He Cheng Pei Jinhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期208-214,共7页
Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,a... Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test. 展开更多
关键词 AIRBAG VENT ORIFICE soft LANDING MULTI-OBJECTIVE optimization unmanned aerial vehicle (UAV)
下载PDF
Unmanned Aerial Vehicles:Control Methods and Future Challenges 被引量:14
14
作者 Zongyu Zuo Cunjia Liu +1 位作者 Qing-Long Han Jiawei Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期601-614,共14页
With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during th... With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised. 展开更多
关键词 Aircraft control disturbance rejection PATH-FOLLOWING trajectory tracking unmanned aerial vehicle
下载PDF
Automatic Carrier Landing Control for Unmanned Aerial Vehicles Based on Preview Control 被引量:9
15
作者 Zhen Ziyang Ma Kun Bhatia Ajeet Kumar 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期413-419,共7页
For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.How... For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model. 展开更多
关键词 carrier-based unmanned aerial vehicles optimal preview control automatic carrier landing system deck motion predictor
下载PDF
Quaternion-based Nonlinear Trajectory Tracking Control of a Quadrotor Unmanned Aerial Vehicle 被引量:5
16
作者 ZHA Changliu DING Xilun +1 位作者 YU Yushu WANG Xueqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期77-92,共16页
At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the m... At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the maneuverability of the UAV. To overcome this problem, based on the quatemion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized. 展开更多
关键词 unmanned aerial vehicle QUATERNION nonlinear control trajectory linearization control SINGULARITY
下载PDF
A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network 被引量:4
17
作者 Yamin Yan Yongtu Liang +4 位作者 Haoran Zhang Wan Zhang Huixia Feng Bohong Wang Qi Liao 《Petroleum Science》 SCIE CAS CSCD 2019年第2期458-468,共11页
Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem... Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability. 展开更多
关键词 PIPELINE network unmanned aerial vehicle INSPECTION MIXED-INTEGER nonlinear PROGRAMMING TWO-STAGE solution
下载PDF
Flight Control System of Unmanned Aerial Vehicle 被引量:5
18
作者 浦黄忠 甄子洋 夏曼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期1-8,共8页
To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target trackin... To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted. 展开更多
关键词 unmanned aerial vehicle(UAV) flight control optimal control adaptive control intelligent control
下载PDF
Outage Performance of Non-Orthogonal Multiple Access Based Unmanned Aerial Vehicles Satellite Networks 被引量:18
19
作者 Ting Qi Wei Feng Youzheng Wang 《China Communications》 SCIE CSCD 2018年第5期1-8,共8页
With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to inte... With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme. 展开更多
关键词 non-orthogonal multiple access(NOMA) outage performance power allocation satellite networks unmanned aerial vehicles (UAVs)
下载PDF
Circular Formation Flight Control for Unmanned Aerial Vehicles With Directed Network and External Disturbance 被引量:11
20
作者 Yangyang Chen Rui Yu +1 位作者 Ya Zhang Chenglin Liu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期505-516,共12页
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results... This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations. 展开更多
关键词 Directed network external disturbance flight control unmanned aerial vehicles(UAVs)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部