期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Gust response of an elasto-flexible morphing wing using fluid–structure interaction simulations
1
作者 Jonathan PFLÜGER Christian BREITSAMTER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期45-57,共13页
Small and micro unmanned aircraft are the focus of scientific interest due to their wide range of applications.They often operate in a highly unstable flight environment where the application of new morphing wing tech... Small and micro unmanned aircraft are the focus of scientific interest due to their wide range of applications.They often operate in a highly unstable flight environment where the application of new morphing wing technologies offers the opportunity to improve flight characteristics.The investigated concept comprises port and starboard adjustable wings,and an adaptive elastoflexible membrane serves as the lifting surface.The focus is on the benefits of the deforming membrane during the impact of a one-minus-cosine type gust.At a low Reynolds number of Re=264000,the morphing wing model is investigated numerically by unsteady fluid-structure interaction simulations.First,the numerical results are validated by experimental data from force and moment,flow field,and deformation measurements.Second,with the rigid wing as the baseline,the flexible case is investigated,focusing on the advantages of the elastic membrane.For all configurations studied,the maximum amplitude of the lift coefficient under gust load shows good agreement between the experimental and numerical results.During the decay of the gust,they differ more the higher the aspect ratio of the wing.When considering the flow field,the main differences are due to the separation behavior on the upper side of the wing.The flow reattaches earlier in the experiments than in the simulations,which explains the higher lift values observed in the former.Only at one intermediate configuration does the lift amplitude of the rigid configuration exceeds that of the flexible by about 12%,with the elastic membrane resulting in a smaller and more uniform peak load,which is also evident in the wing loading and hence in the root bending moment. 展开更多
关键词 Membrane wing Morphing wing Flexible wing surface Computational fluid dynam-ics Fluid-structure interaction Unsteady inflow condition gust response
原文传递
Gust response modeling and alleviation scheme design for an elastic aircraft 被引量:6
2
作者 WU ZhiGang CHEN Lei +1 位作者 YANG Chao TANG ChangHong 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第11期3110-3118,共9页
Time-domain approaches are presented for analysis of the dynamic response of aeroservoelastic systems to atmospheric gust excitations. The continuous and discrete gust inputs are defined in the time domain. The time-d... Time-domain approaches are presented for analysis of the dynamic response of aeroservoelastic systems to atmospheric gust excitations. The continuous and discrete gust inputs are defined in the time domain. The time-domain approach to continuous gust response uses a state-space formulation that requires the frequency-dependent aerodynamic coefficients to be approximated with the rational function of a Laplace variable. A hybrid method which combines the Fourier transform and time-domain approaches is used to calculate discrete gust response. The purpose of this approach is to obtain a time-domain state-space model without using rational function approximation of the gust columns. Three control schemes are designed for gust alleviation on an elastic aircraft, and three control surfaces are used: aileron, elevator and spoiler. The signals from the rate of pitch angle gyroscope or angle of attack sensor are sent to the elevator while the signals from accelerometers at the wing tip and center of gravity of the aircraft are sent to the aileron and spoiler, respectively. All the control laws are based on classical control theory. The results show that acceleration at the center of gravity of the aircraft and bending-moment at the wing-root section are mainly excited by rigid modes of the aircraft and the accelerations at the wing-tip are mainly excited by elastic modes of the aircraft. All the three control schemes can be used to alleviate the wing-root moments and the accelerations. The gust response can be alleviated using control scheme 3, in which the spoiler is used as a control surface, but the effects are not as good as those of control schemes 1 and 2. 展开更多
关键词 aeroelastic AEROSERVOELASTIC gust response gust alleviation control scheme design
原文传递
Aeroelastic dynamic response of elastic aircraft with consideration of two-dimensional discrete gust excitation 被引量:2
3
作者 Yang YANG Chao YANG Zhigang WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第4期1228-1241,共14页
Design loads generally require a one-dimensional discrete gust profile without consideration of the spanwise effect,and this profile cannot represent the true gust field exactly.For a high aspect ratio aircraft,two-di... Design loads generally require a one-dimensional discrete gust profile without consideration of the spanwise effect,and this profile cannot represent the true gust field exactly.For a high aspect ratio aircraft,two-dimensional gusts may cause critical load conditions,and approaches for calculating dynamic responses under two-dimensional discrete gust excitation are rarely presented.In this paper,a spanwise non-uniform vertical discrete gust field is established based on a onedimensional‘1-cos’gust profile in reference to a DARPA proposal,while frequency and hybrid approaches to the dynamic response analysis of flexible aircraft under this two-dimensional gust excitation are presented.Solution techniques have been applied to a high aspect ratio aircraft to assess the different response characteristics with a comparison between one-dimensional and two-dimensional discrete gust field conditions.The results show that the two-dimensional discrete gust model produces a higher bending moment than that of the one-dimensional condition.Therefore,the critical load conditions that are derived from the two-dimensional discrete gust for high aspect ratio aircraft should be seriously considered.According to the analysis,an active control scheme to alleviate the bending loads caused by the two-dimensional gust is designed,and alleviation effects in different gust conditions are compared. 展开更多
关键词 AEROSERVOELASTIC Discrete gust gust response gust response alleviation Two-dimensional gust
原文传递
Application of Active Flow Control Technique for Gust Load Alleviation 被引量:8
4
作者 XU Xiaoping ZHU Xiaoping +1 位作者 ZHOU Zhou FAN Ruijun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期410-416,共7页
A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Gl... A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Global Hawk" airfoil using arrays of jets during the gust process. Based on unsteady Navier-Stokes equations, the grid-velocity method is introduced to simulate the gust influence, and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well. An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil’s surface to emulate the time dependent velocity boundary conditions. Firstly, after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack, it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references. Furthermore, gust response characteristic for the quasi "Global Hawk" airfoil is analyzed. Five kinds of flow control techniques are introduced as steady blowing, steady suction, unsteady blowing, unsteady suction and synthetic jets. The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice. Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation, can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation. 展开更多
关键词 active flow control gust response gust alleviation numerical simulation AERODYNAMICS unsteady flow AIRFOIL
原文传递
Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control 被引量:5
5
作者 Bi Ying Xie Changchuan +1 位作者 An Chao Yang Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期292-309,共18页
An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibra... An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton's principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation(GLA) control system is proposed. The gust load alleviation system employs classic propor tional-integral-derivative(PID) controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%. 展开更多
关键词 Active control Aeroelastic wing gust load alleviation gust response Piezoelectric actuators Wind tunnel test
原文传递
Comparison and harmonization of building wind loading codes among the Asia-Pacific Economies 被引量:3
6
作者 Yaojun GE Shuyang CAO Xinyang JIN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第4期402-410,共9页
This paper reviews wind loading codes and standards in the Asia-Pacific Region,in particular in the 15 countries and areas.A general description of wind loading model is given as a famous wind loading chain described ... This paper reviews wind loading codes and standards in the Asia-Pacific Region,in particular in the 15 countries and areas.A general description of wind loading model is given as a famous wind loading chain described by four variables including velocity pressure,exposure factor,pressure coefficient,and gust response factor.Through the APEC-WW Workshops and the extensive calculations for three examples of low,medium and high rise buildings,these four important variables of wind loads are evaluated and compared with statistical parameters,mean values and coefficients of variation.The main results of the comparison show some differences among the 15 economies,and the reasons and further incorporation are discussed and suggested. 展开更多
关键词 wind loading CODIFICATION velocity pressure exposure factor pressure coefficient gust response factor
原文传递
Extension of analytical indicial aerodynamics to generic trapezoidal wings in subsonic flow 被引量:2
7
作者 Andrea DA RONCH Antonino VENTURA +3 位作者 Marcello RIGHI Matteo FRANCIOLINI Marco BERCI Daniel KHARLAMOV 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期617-631,共15页
Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 Ma 0.7. The formulation herein proposed extends wellknown aerodynamic theories, which are... Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 Ma 0.7. The formulation herein proposed extends wellknown aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to generic trapezoidal wing planforms. Firstly, a thorough study is executed to assess the accuracy and limitation of analytical predictions, using unsteady results from two state-of-the-art computational fluid dynamics solvers as cross-validated benchmarks. Indicial functions are calculated for a step change in the angle of attack and for a sharp-edge gust, each for four wing configurations and three Mach numbers. Then, analytical and computational indicial responses are used to predict dynamic derivatives and the maximum lift coefficient following an encounter with a one-minus-cosine gust. It is found that the analytical results are in excellent agreement with the computational results for all test cases. In particular, the deviation of the analytical results from the computational results is within the scatter or uncertainty in the data arising from using two computational fluid dynamics solvers. This indicates the usefulness of the developed analytical theories. 展开更多
关键词 Analytical approach CFD Compressible flow gust response Indicial aerodynamics Trapezoidal wing
原文传递
Time-domain nonlinear aeroelastic analysis and wind tunnel test of a flexible wing using strain-based beam formulation 被引量:1
8
作者 Yang MENG Zhiqiang WAN +1 位作者 Changchuan XIE Chao AN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期380-396,共17页
A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combine... A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combined with the Unsteady Vortex Lattice Method(UVLM) to form the complete framework for aeroelastic analysis. The nonlinear second-order differential equations are solved by an implicit time integration scheme that incorporates a Newton-Raphson sub-iteration technique. An advanced fiber optic sensing technique is firstly used in a wind tunnel for measuring large structural deformations. In the theoretical study, the nonlinear flutter boundary is determined by analyzing the transient response about the nonlinear static equilibrium with a series of flow velocities. The gust responses of the wing model at various gust frequencies are also studied. Comparisons of the theoretical and experimental results show that the proposed method is suitable for determining the nonlinear flutter boundary and simulating the gust response of flexible wings in the time domain. 展开更多
关键词 Flexible wings FLUTTER Geometric nonlinearity gust response Wind tunnel test
原文传递
Simulation of Viscous Flows Around A Moving Airfoil by Field Velocity Method with Viscous Flux Correction 被引量:1
9
作者 Ning Gu Zhiliang Lu Tongqing Guo 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第3期294-310,共17页
Based on the field velocity method,a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper.Responses to pitching and plunging motions of the airfoil are simulated... Based on the field velocity method,a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper.Responses to pitching and plunging motions of the airfoil are simulated under different conditions.The obtained results are compared with those of moving grid method and good agreement is achieved.In the conventional field velocity method,the Euler solver is usually used to simulate the movement of the airfoil.However,when viscous effect is considered,unsteady Navier-Stokes equations have to be solved and the viscous flux correction must be taken into account.In this work,the viscous flux correction is introduced into the conventional field velocity method when non-uniform grid speed distribution is occurred.Numerical experiments for the flow around NACA0012 airfoil showed that the proposed approach can well simulate viscous moving boundary flow problems. 展开更多
关键词 gust response unsteady Navier-Stokes equations field velocity method viscous flux correction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部