期刊文献+
共找到8,323篇文章
< 1 2 250 >
每页显示 20 50 100
Fecal microbiota transplantation:whole grain highland barley improves glucose metabolism by changing gut microbiota 被引量:1
1
作者 Xin Ren Fulong Zhang +3 位作者 Min Zhang Yuan Fang Zenglong Chen Meili Huan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2014-2024,共11页
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro... Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition. 展开更多
关键词 Highland barley DIABETES Glucose metabolism gut microbiota Fecal bacteria transplantation
下载PDF
Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats 被引量:1
2
作者 Qishan Wang Bin Liu +5 位作者 Xianping Li Junying Zhao Zongshen Zhang Weicang Qiao Xinyue Wei Lijun Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1258-1270,共13页
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat... The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis. 展开更多
关键词 Dairy products CALCIUM Vitamin D Bone turnover markers gut microbiota Postmenopausal osteoporosis
下载PDF
Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines
3
作者 Kaiqi Li Xiangyu Xiao +8 位作者 Yuling Li Sichen Lu Jianghang Zi Xiaoqiang Sun Jia Xu Hao‑Yu Liu Xiaoqiong Li Tongxing Song Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1761-1777,共17页
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart d... Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart disease and osteoarthritis in dogs and cats.A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated.However,the understanding of such pathophysiology in companion animals is lim-ited.This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity,emphasizing the involvement of the gut microbiota.Furthermore,we also discuss the management of obesity,including approaches like nutritional interventions,thus providing novel insights into obesity prevention and treatment for canines and felines. 展开更多
关键词 CAT DOG gut microbiota Lipid metabolism Obesity Management
下载PDF
Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones
4
作者 Min Liu Jia Zhang +11 位作者 Yunyan Zhou Shuqi Xiong Mengqing Zhou Lin Wu Qin Liu Zhe Chen Hui Jiang Jiawen Yang Yuxin Liu Yaxiang Wang Congying Chen Lusheng Huang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期578-599,共22页
Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the ext... Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning. 展开更多
关键词 Estrus return Fecal metabolome gut microbiota METAGENOMICS Sex steroid hormones SOW
下载PDF
Voluntary wheel running ameliorated the deleterious effects of high-fat diet on glucose metabolism,gut microbiota and microbial-associated metabolites
5
作者 Ling Zhang Wenyu Zou +4 位作者 Yongyan Hu Honghua Wu Ying Gao Junqing Zhang Jia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1672-1684,共13页
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o... Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice. 展开更多
关键词 High-fat diet Voluntary wheel running gut microbiota Metabolomics Glucose metabolism
下载PDF
Gut microbiota-mediated metabolism of Panax notoginseng saponins and its role in pharmacokinetics and pharmacodynamics
6
作者 Yu-Ying Zheng Wei-Wei Su +2 位作者 Yu-Ling Liu Wei-Jian Zhang Xuan Zeng 《Traditional Medicine Research》 2024年第12期41-50,共10页
Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut mic... Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS. 展开更多
关键词 Panax notoginseng saponins gut microbiota MEtabolism PHARMACOKINETICS PHARMACODYNAMICS
下载PDF
Gut microbiome-based thiamine metabolism contributes to the protective effect of one acidic polysaccharide from Selaginella uncinata(Desv.)Spring against inflammatory bowel disease
7
作者 Haochen Hui Zhuoya Wang +5 位作者 Xuerong Zhao Lina Xu Lianhong Yin Feifei Wang Liping Qu Jinyong Peng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第2期177-195,共19页
Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contain... Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contained galacturonic acid,galactose,xylose,arabinose,and rhamnose with the main chain structure of→4)-α-d-GalAp-(1→and→6)-β-d-Galp-(1→and the branched structure of→5)-α-l-Araf-(1→.Animal experiments showed that compared with Model group,SUSP-4 significantly improved body weight status,disease activity index(DAI),colonic shortening,and histopathological damage,and elevated occludin and zonula occludens protein 1(ZO-1)expression in mice induced by dextran sulfate sodium salt(DSS).16S ribosomal RNA(rRNA)sequencing indicated that SUSP-4 markedly downregulated the level of Akkermansia and Alistipes.Metabolomics results confirmed that SUSP-4 obviously elevated thiamine levels compared with Model mice by adjusting thiamine metabolism,which was further confirmed by a targeted metabolism study.Fecal transplantation experiments showed that SUSP-4 exerted an anti-IBD effect by altering the intestinal flora in mice.A mechanistic study showed that SUSP-4 markedly inhibited macrophage activation by decreasing the levels of phospho-nuclear factor kappa-B(p-NF-κB)and cyclooxygenase-2(COX-2)and elevating NF-E2-related factor 2(Nrf2)levels compared with Model group.In conclusion,SUSP-4 affected thiamine metabolism by regulating Akkermania and inhibited macrophage activation to adjust NF-κB/Nrf2/COX-2-mediated inflammation and oxidative stress against IBD.This is the first time that plant polysaccharides have been shown to affect thiamine metabolism against IBD,showing great potential for in-depth research and development applications. 展开更多
关键词 gut microbiota Inflammatory bowel disease POLYSACCHARIDE Selaginella uncinata(Desv.)Spring Thiamine metabolism
下载PDF
Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis
8
作者 Danting Dang Bowen Li +5 位作者 Mengfan Ding RPaul Ross Catherine Stanton Jianxin Zhao Bo Yang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1589-1601,共13页
Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old ma... Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD. 展开更多
关键词 Limosilactobacillus mucosae Nonalcoholic fatty liver disease(NAFLD) Probiotic Lipid metabolism gut microbiota
下载PDF
Saikosaponin D improves nonalcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway
9
作者 Lan Li Shengye Yang +5 位作者 Xinyu Liang Yameng Liu Hualing Xu Xiaozhen Guo Cen Xie Xiaojun Xu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2703-2717,共15页
Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active comp... Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active components of Bupleurum.The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on“gut-liver axis”.Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice,improved insulin sensitivity,and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase(AST)and alanine aminotransferase(ALT).Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor(Fxr),small heterodimer partner(Shp),recombinant fibroblast growth factor 15(Fgf15)and apical sodium dependent bile acid transporter(Asbt)in the intestine,suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling.SSD can significantly reduce the gut microbiota associated with bile salt hydrolase(BSH)expression,such as Clostridium.Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids,thereby inhibiting the intestinal FXR.These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD. 展开更多
关键词 Saikosaponin D(SSD) Non-alcoholic fatty liver disease Bile acids gut microbiota Farnesoid X receptor
下载PDF
Protective mechanism of Coprinus comatus polysaccharide on acute alcoholic liver injury in mice,the metabolomics and gut microbiota investigation 被引量:3
10
作者 Jinyan Yu Jianguang Sun +4 位作者 Min Sun Weidong Li Dongmei Qi Yongqing Zhang Chunchao Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期401-413,共13页
Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath... Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways. 展开更多
关键词 Coprinus comatus POLYSACCHARIDE Alcoholic liver disease Metabolomics gut microbiota
下载PDF
Natural sources,refined extraction,biosynthesis,metabolism,and bioactivities of dietary polymethoxyflavones(PMFs) 被引量:2
11
作者 Renyou Gan Yi Liu +6 位作者 Hang Li Yu Xia Huan Guo Fang Geng Qiguo Zhuang Huabin Li Dingtao Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期27-49,共23页
Polymethoxyflavones(PMFs)are a type of uncommon dietary flavonoids,characterized by more than one methoxy group,which exist in limited plant species,like Citrus species and Kaempferia parviflora.In addition,different ... Polymethoxyflavones(PMFs)are a type of uncommon dietary flavonoids,characterized by more than one methoxy group,which exist in limited plant species,like Citrus species and Kaempferia parviflora.In addition,different PMFs,such as nobiletin,sinensetin,tangeretin,and casticin,have been isolated from these natural sources.PMFs have received increasing attention due to their multiple bioactivities,such as antioxidant,anti-inflammatory,anti-cancer,metabolic regulatory,immunoregulatory,neuroprotective,and skin protective effects.These bioactivities of PMFs should be associated with the regulation of critical molecular targets and the interaction with gut microbiota.In order to provide a comprehensive and updated review of PMFs,their natural sources,refined extraction,biosynthesis,metabolism,and bioactivities are summarised and discussed,with the emphasis on the molecular mechanisms of PMFs on regulating different chronic diseases.Overall,PMFs may be promising flavonoids to the forefront of nutraceuticals for the prevention and/or treatment of certain human chronic diseases. 展开更多
关键词 NOBILETIN O-METHYLTRANSFERASES gut microbiota BIOACTIVITIES Molecular mechanism
下载PDF
Metabolic syndrome’s new therapy:Supplement the gut microbiome 被引量:1
12
作者 Yong-Wei Xu Jun Tian +2 位作者 Yan Song Ba-Cui Zhang Jing Wang 《World Journal of Diabetes》 SCIE 2024年第4期793-796,共4页
This letter to the editor discusses the publication on gut microbiome supple-mentation as therapy for metabolic syndrome.Gut microbiome dysbiosis disrupts intestinal bacterial homeostasis and is related to chronic inf... This letter to the editor discusses the publication on gut microbiome supple-mentation as therapy for metabolic syndrome.Gut microbiome dysbiosis disrupts intestinal bacterial homeostasis and is related to chronic inflammation,insulin resistance,cardiovascular diseases,type 2 diabetes mellitus,and obesity.Previous research has found that increasing the abundance of beneficial microbiota in the gut modulates metabolic syndrome by reducing chronic inflammation and insulin resistance.Prebiotics,probiotics,synbiotics,and postbiotics are often used as supplements to increase the number of beneficial microbes and thus the produc-tion of short-chain fatty acids,which have positive effects on the gut microbiome and metabolic syndrome.In this review article,the author summarizes the available supplements to increase the abundance of beneficial gut microbiota and reduce the abundance of harmful microbiota in patients with metabolic disorders.Our group is also researching the role of the gut microbiota in chronic liver disease.This article will be of great help to our research.At the end of the letter,the mechanism of the gut microbiota in chronic liver disease is discussed. 展开更多
关键词 gut microbiome Metabolic syndrome Diabetes mellitus Short-chain fatty acids Chronic liver disease
下载PDF
Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats
13
作者 Jian Ouyang Xiuping Li +6 位作者 Changwei Liu Danmin Lu Jie Ouyang Fang Zhou Qi Liu Jianan Huang Zhonghua Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2036-2047,共12页
Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity w... Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity were unclear.Therefore,we used different doses of JSTE(75,150 and 300 mg/(kg·day))to evaluate the effect on high-fat diet(HFD)-induced rats under 8 weeks of intervention.Here,our results showed that JSTE could significantly reduce body weight gain,blood lipid levels and fat accumulation,improve fatty damage in liver tissue(P<0.05).In addition,JSTE increased the expression of intestinal tight junction proteins(P<0.05),relieved metabolic endotoxemia(P<0.05)and chronic low-grade inflammation in HFD rats.Sequencing of fecal samples showed that JSTE could effectively reverse the microbial diversity and the ratio of Firmicutes to Bacteroidetes to normal levels in HFD-fed rats.Desulfovibrioceae and Erysipelotrichaceae,which are positively related to obesity,were decreased by JSTE intervention(P<0.05).while Bifidobacteriaceae,Bacteroidaceae,Akkermansia,and Clostridium,which are negatively related to obesity,were increased.Together,these results suggested that JSTE might effectively prevent obesity by modulating gut microbiota dysbiosis,intestinal barrier dysfunction,metabolic endotoxemia and chronic low-grade infl ammation in HFD-induced rats. 展开更多
关键词 Junshanyinzhen tea OBESITY gut microbiota gut barrier function Metabolic endotoxemia
下载PDF
Gut microbiota remodeling drived by dietary millet protein prevents the metabolic syndrome
14
作者 Shuhua Shan Ruopeng Yin +6 位作者 Jiangying Shi Lizhen Zhang Jiaqi Zhou Qinqin Qiao Xiushan Dong Wenjing Zhao Zhuoyu Li 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1987-2001,共15页
Metabolic syndrome(Met S)is a chronic disease associated with the disturbance of gut microbiota homeostasis.Metabolites derived from gut microbes play essential roles in Met S prevention and therapy.Here,we focused on... Metabolic syndrome(Met S)is a chronic disease associated with the disturbance of gut microbiota homeostasis.Metabolites derived from gut microbes play essential roles in Met S prevention and therapy.Here,we focused on the inhibitory effect of the extract of millet bran protein(EMBP)on a high-fat diet(HFD)-induced Met S,aiming to identify gut microbiota and their metabolites that involve in the anti-Met S activity of EMBP.The obesity,chronic inflammation,insulin resistance in Met S mouse models were abolished after EMBP treatment.The protective mechanism of EMBP against HFD-induced Met S may depend on improved gut barrier function.Using microbiome analysis,we found that EMBP supplementation improved gut microbiome dysbiosis in Met S mice,specifically upregulating Bacteroides acidifaciens.The fecal microbiota transplantation(FMT)also demonstrated this phenomenon.In addition,metabolomic analysis showed that EMBP mediates metabolic profiling reprogramming in Met S mice.Notably,a microbiota-derived metabolite,gamma-aminobutyric acid(GABA),is enriched by EMBP.In addition,exogenous GABA treatment produced a similar protective effect to EMBP by improving NRF2-dependent gut barrier function to protect HFDinduced Met S.The results suggest that EMBP suppress host Met S by remodeling of gut microbiota as an effective candidate for next-generation medicine food dual purpose dietary supplement to intervene in MetS. 展开更多
关键词 Metabolic syndrome gut microbiota Extract of millet bran protein Gamma-aminobutyric acid gut barrier function
下载PDF
Gut microbiome and serum metabolome analyses identify Bacteroides fragilis as regulators of serotonin content and PRL secretion in broody geese
15
作者 Yu Zhang Ning Zhou +7 位作者 Jia Wu Lina Song Qiang Bao Kaiqi Weng Yang Zhang Wanwipa Vongsangnak Guohong Chen Qi Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2033-2051,共19页
Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirect... Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry. 展开更多
关键词 GEESE broody behavior gut microbiota SEROTONIN PROLACTIN
下载PDF
Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets 被引量:5
16
作者 Xin Zhang Yang Yun +7 位作者 Zheng Lai Shuli Ji Ge Yu Zechen Xie Hao Zhang Xiang Zhong Tian Wang Lili Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期1150-1166,共17页
Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,... Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,has been reported to effectively attenuate lipid metabolism dysfunctions.Therefore,the objective of this study was to investigate the effects of C.butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets.Methods Sixteen IUGR and eight normal birth weight(NBW)neonatal male piglets were used in this study.From d 3to d 24,in addition to drinking milk,the eight NBW piglets(NBW-CON group,n=8)and eight IUGR piglets(IUGR-CON group,n=8)were given 10 mL sterile saline once a day,while the remaining IUGR piglets(IUGR-CB group,n=8)were orally administered C.butyricum at a dose of 2×108colony-forming units(CFU)/kg body weight(suspended in 10 mL sterile saline)at the same frequency.Results The IUGR-CON piglets exhibited restricted growth,impaired hepatic morphology,disordered lipid metabolism,increased abundance of opportunistic pathogens and altered ileum and liver bile acid(BA)profiles.However,C.butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets,characterized by a decreased abundance of opportunistic pathogens in the ileum,including Streptococcus and Enterococcus.The decrease in these bile salt hydrolase(BSH)-producing microbes increased the content of conjugated BAs,which could be transported to the liver and function as signaling molecules to activate liver X receptorα(LXRα)and farnesoid X receptor(FXR).This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol.As a result,the growth performance and morphological structure of the liver improved in the IUGR piglets.Conclusion These results indicate that C.butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes(Streptococcus and Enterococcus).This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRαand FXR.The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets. 展开更多
关键词 Bile acid Clostridium butyricum gut microbiota Intrauterine growth restriction Lipid metabolism Suckling piglet
下载PDF
Polysaccharides of Aspergillus cristatus attenuate obesity by regulating gut microbiota and gut microbiota-related metabolites
17
作者 Mingzhi Zhu Bohao Shang +8 位作者 Fang Zhou Yong Yuan Feiyan Yin Jin Cao Jianan Huang Kunbo Wang Xin Zeng Maiquan Li Zhonghua Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1513-1530,共18页
Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesi... Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesity effect.However,the classification of golden-flower fungi is still controversial;the anti-obesity effect of golden-flower fungus polysaccharides remains unknown.In this study,we identify a golden-flower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis,which resolves the controversy of classification.Moreover,we find A.cristatus polysaccharides(ACPS)attenuate obesity in rats.ACPS modulate gut bacterial composition.in which Akkermansia,Akkermansia muciniphila,Bacteroides,Romboutsia,Blautia,and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum,hepatic,and fecal total bile acid content.Furthermore,ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity,according to a fecal transplantation experiment.Thus,ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites. 展开更多
关键词 Golden-flower fungus Aspergillus cristatus POLYSACCHARIDES OBESITY gut microbiota
下载PDF
Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens
18
作者 Mingkun Gao Chaoyong Liao +3 位作者 Jianyang Fu Zhonghua Ning Zengpeng Lv Yuming Guo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期779-794,共16页
Background Baicalin and probiotic cocktails are promising feed additives with broad application prospects.While probiotic cocktails are known to enhance intestinal health,the potential synergistic impact of combining ... Background Baicalin and probiotic cocktails are promising feed additives with broad application prospects.While probiotic cocktails are known to enhance intestinal health,the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored.Therefore,this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the healthpromoting effects.Results A total of 3201-day-old male Arbor Acres broilers were divided into 4 groups,each with 8 replicates of 10 chicks per replicate.Over a period of 42 d,the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin(BC),1,000 g/t probiotic cocktails(PC),or a combination of both BC(37.5 g/t)and PC(1,000 g/t).The results demonstrated that BC+PC exhibited positive synergistic effects,enhancing intestinal morphology,immune function,and barrier function.This was evidenced by increased VH/CD ratio,sIgA levels,and upregulated expression of occludin and claudin-1(P<0.05).16S rRNA analysis indicated that PC potentiated the effects of BC,particularly in the ileum,where BC+PC significantly increased theα-diversity of the ileal microbiota,altered itsβ-diversity,and increased the relative abundance of Flavonifractor(P<0.05),a flavonoid-metabolizing bacterium.Furthermore,Flavonifractor positively correlated with chicken ileum crypt depth(P<0.05).While BC+PC had a limited effect on cecal microbiota structure,the PC group had a very similar microbial composition to BC+PC,suggesting that the effect of PC at the distal end of the gut overshadowed those of BC.Conclusions We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails.Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum,thereby influencing the ileal microbiota structure.This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota.These findings provide compelling evidence for the future development of feed additive combinations. 展开更多
关键词 BAICALIN gut health Ileal microbiota Probiotic cocktails Synergistic effects
下载PDF
Dynamic gut microbiome-metabolome in cationic bovine serum albumin induced experimental immune-complex glomerulonephritis and effect of losartan and mycophenolate mofetil on microbiota modulation
19
作者 Wenying Shi Zhaojun Li +5 位作者 Weida Wang Xikun Liu Haijie Wu Xiaoguang Chen Xunrong Zhou Sen Zhang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期562-577,共16页
Dynamic changes in gut dysbiosis and metabolomic dysregulation are associated with immune-complex glomerulonephritis(ICGN).However,an in-depth study on this topic is currently lacking.Herein,we report an ICGN model to... Dynamic changes in gut dysbiosis and metabolomic dysregulation are associated with immune-complex glomerulonephritis(ICGN).However,an in-depth study on this topic is currently lacking.Herein,we report an ICGN model to address this gap.ICGN was induced via the intravenous injection of cationized bovine serum albumin(c-BSA)into Sprague-Dawley(SD)rats for two weeks,after which mycophenolate mofetil(MMF)and losartan were administered orally.Two and six weeks after ICGN establishment,fecal samples were collected and 16S ribosomal DNA(rDNA)sequencing and untargeted metabolomic were conducted.Fecal microbiota transplantation(FMT)was conducted to determine whether gut normali-zation caused by MMF and losartan contributed to their renal protective effects.A gradual decline in microbial diversity and richness was accompanied by a loss of renal function.Approximately 18 genera were found to have significantly different relative abundances between the early and later stages,and Marvinbryantia and Allobaculum were markedly upregulated in both stages.Untargeted metabolomics indicated that the tryptophan metabolism was enhanced in ICGN,characterized by the overproduction of indole and kynurenic acid,while the serotonin pathway was reduced.Administration of losartan and MMF ameliorated microbial dysbiosis and reduced the accumulation of indoxyl conjugates in feces.FMT using feces from animals administered MMF and losartan improved gut dysbiosis by decreasing the Firmicutes/Bacteroidetes(F/B)ratio but did not improve renal function.These findings indicate that ICGN induces serous gut dysbiosis,wherein an altered tryptophan metabolism may contribute to its pro-gression.MMF and losartan significantly reversed the gut microbial and metabolomic dysbiosis,which partially contributed to their renoprotective effects. 展开更多
关键词 Immune-complex glomerulonephritis gut microbiome Metabolomics Fecal microbiota transplant Tryptophan metabolism
下载PDF
Lactobacillus plantarum CCFM1180 attenuates obesity induced by estrogen deficiency by activating estrogen receptor alpha in abdominal adipose tissue and regulating gut microbiota-derived metabolites
20
作者 Qian Chen Chunxia Mei +5 位作者 Min Guo Botao Wang Haiqin Chen Jianxin Zhao Gang Wang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期765-777,共13页
Lipid metabolism disorders commonly occur during menopause.Estrogen deficiency has been shown to lead to excessive energy intake and abnormal lipid metabolism in ovariectomized rats,resulting in obesity.Probiotics exh... Lipid metabolism disorders commonly occur during menopause.Estrogen deficiency has been shown to lead to excessive energy intake and abnormal lipid metabolism in ovariectomized rats,resulting in obesity.Probiotics exhibit anti-obesity properties,and their underlying mechanism has been widely reported.In this study,we demonstrated the metabolic benefits of Lactobacillus plantarum CCFM1180 in suppressing appetite,controlling body weight,correcting obesity-induced abnormalities,enhancing liver lipid metabolism,and protecting liver function in estrogen-deficient rats.The mechanisms associated with the anti-obesity and anti-dyslipidemia effects of CCFM1180 on estrogen-deficient rats were clarified.The results showed that CCFM1180 dramatically reduced food intake by activating the expression of estrogen receptor alpha(ERα)and increasing the level of leptin in abdominal adipose tissue.These changes,combined with the increased butyrate concentration and recovered bile acid structure,helped enhance lipid metabolism.Additionally,CCFM1180 treatment was found to be safer than exogenous estrogen supplementation.Thus,L.plantarum CCFM1180 could be considered a new therapeutic strategy for preventing and alleviating menopausal lipid abnormalities. 展开更多
关键词 Bile acid gut microbiota MENOPAUSE OVARIECTOMY Short chain fatty acid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部