The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi...Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ...Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.展开更多
Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-tran...Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.展开更多
Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us unders...Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us understand the complexities of animal communication.Corvids are well known for their extraordinary cognitive abilities,but relatively little attention has been paid to their vocal function.Here,we investigated the functionally referential signals of a cooperatively breeding corvid species,Azure-winged Magpie(Cyanopica cyanus).Through field observations,we suggest that Azure-winged Magpie uses referential alarm calls to distinguish two types of threats:’rasp’ calls for terrestrial threats and ’chatter’ calls for aerial threats.A playback experiment revealed that Azure-winged Magpies responded to the two call types with qualitatively different behaviors.They sought cover by flying into the bushes in response to the ’chatter’ calls,and flew to or stayed at higher positions in response to ’rasp’ calls,displaying a shorter response time to ’chatter’ calls.Significant differences in acoustic structure were found between the two types of calls.Given the extensive cognitive abilities of corvids and the fact that referential signals were once thought to be unique to primates,these findings are important for expanding our understanding of social communication and language evolution.展开更多
Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development rema...Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development.展开更多
Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescen...Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescence.The expression of ONAC016 increased rapidly in rice leaves during the progression of dark-induced and natural senescence.The onac016-1 knockout mutant showed a delayed leaf yellowing phenotype,whereas the overexpression of ONAC016 accelerated leaf senescence.Notably,ONAC016 expression was upregulated by abscisic acid(ABA),and thus detached leaves of the onac016-1 mutant remained green much longer under ABA treatment.Quantitative RT-PCR analysis showed that ONAC016 upregulates the genes associated with chlorophyll degradation,senescence,and ABA signaling.Yeast one-hybrid and dual-luciferase assays revealed that ONAC016 binds directly to the promoter regions of OsNAP,a key gene involved in chlorophyll degradation and ABA-induced senescence.Taken together,these results suggest that ONAC016 plays an important role in promoting leaf senescence through the ABA signaling pathway involving OsNAP.展开更多
Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in ...Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.展开更多
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the ...Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the underlying molecular mechanisms by which curcumin inhibits CRC.Methods:HT29 and SW480 cells were treated with curcumin or/and Doxycycline(DOX),and cell viability,colony forming ability,migration and invasion were confirmed by cell counting kit-8(CCK-8),colony forming,Transwell assays.And Yes-associated protein 1(YAP)and PDZ-binding motif(TAZ)signaling-related genes or proteins were analyzed using reverse transcription quantitative real-time PCR(RT-qPCR),western blot,and immunofluorescence assays.Then nude mice xenograft tumor model was constructed,YAP and Ki67 expressions were tested by immunohistochemistry(IHC)staining.Results:In our study,we proved that curcumin significantly inhibited the CRC cell viability,cell migration,and cell invasion abilities.In addition,curcumin inhibited YAP and Transcriptional coactivator with TAZ or the YAP/TAZ signaling axis in CRC cells.Further,in the nude mice model,curcumin treatment significantly decreased the size and weight of xenotransplant tumors.Conclusion:Therefore,curcumin significantly inhibited CRC development and invasion by regulating the YAP/TAZ signaling axis.展开更多
Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucid...Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.展开更多
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo...Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.展开更多
Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and...Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways.展开更多
Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu conce...Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.展开更多
Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control...Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control,IL-1β,IL-1β+BSBT(L),IL-1β+BSBT(M),and IL-1β+BSBT(H)groups(5%,10%and 15%BSBT-containing serum),and then 24h after intervention respectively,the cell proliferation and Apoptosis rate;Western blot detected the expression levels of Bcl-2,BAX,Caspase-3,SOX9,NF-κB p65,MMP-13 proteins in chondrocytes.ELISA detected the levels of TNF-α,IL-6,and bFGF in the supernatants of chondrocyte culture.Results:Compared with Control group,cell proliferation activity decreased,apoptosis rate increased,NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level increased,and SOX9 protein level and bFGF level decreased in IL-1βgroup;compared with IL-1βgroup,different concentrations of BSBT-containing serum group,cell proliferation activity increased,and apoptosis rate decreased.NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level decreased,SOX9 protein level and bFGF level increased;compared with IL-1β+BSBT(L)group,cell proliferation activity increased,apoptosis rate decreased in IL-1β+BSBT(M)and IL-1β+BSBT(H)groups,and NF-κB p65,MMP-13 protein level and TNF-αlevel decreased.13 protein levels and TNF-αand IL-6 levels decreased,and SOX9 protein levels and bFGF levels increased.Conclusion:BSBT-containing serum may promote IL-1β-induced proliferation of chondrocytes,reduce apoptosis,improve the microenvironment of chondrocytes,and promote cartilage repair through the SOX9/NF-κB/MMP-13 signaling pathway.展开更多
MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two...MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two chicken(Gallus gallus;Gga)miR-181-5p family members widely expressed in various tissues,specifically miR-181a-5p and miR-181b-5p.Besides,the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.Functionally,miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin(MyoG),myogenic differentiation 1(MyoD1),and myosin heavy chain(MyHC),meanwhile accelerating the myotube formation of skeletal muscle satellite cells(SMSCs).Mechanistically,miR-181a-5p and miR-181b-5p directly bind to the 3′untranslated region(UTR)of the transforming growth factor beta receptor 1(TGFBR1)mRNA,further reducing the expression of TGFBR1.TGFBR1 is a key Transforming growth factor beta(TGF-β)signaling transduction receptor and had a negative function in muscle cell differentiation.Furthermore,knockdown of TGFBR1 facilitated the expression of chicken myogenic factors,boosted myotube formation,and decreased the SMAD family member 2/3(SMAD2/3)phosphorylation in chicken SMSCs.SMAD2/3 are downstream of TGF-βsignaling,and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-βsignaling transduction,which resulted in promoting chicken skeletal muscle development.展开更多
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against...BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金supported by Jiangsu Provincial Medical Key Discipline,No.ZDXK202217(to CFL)Jiangsu Planned Projects for Postdoctoral Research Funds,No.1601056C(to SL).
文摘Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金Supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)de la Dirección General de Asuntos de Personal Académico,No.IN212722 and No.IA208424Consejo Mexiquense de Ciencia y Tecnología,No.CS000132Consejo Nacional de Humanidades,Ciencia y Tecnología,No.CF-2023-I-563.
文摘Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
文摘Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.
基金funded by the National Natural Science Foundation of China (Grant No. 32170516, 31872243 to Y.Z.)。
文摘Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us understand the complexities of animal communication.Corvids are well known for their extraordinary cognitive abilities,but relatively little attention has been paid to their vocal function.Here,we investigated the functionally referential signals of a cooperatively breeding corvid species,Azure-winged Magpie(Cyanopica cyanus).Through field observations,we suggest that Azure-winged Magpie uses referential alarm calls to distinguish two types of threats:’rasp’ calls for terrestrial threats and ’chatter’ calls for aerial threats.A playback experiment revealed that Azure-winged Magpies responded to the two call types with qualitatively different behaviors.They sought cover by flying into the bushes in response to the ’chatter’ calls,and flew to or stayed at higher positions in response to ’rasp’ calls,displaying a shorter response time to ’chatter’ calls.Significant differences in acoustic structure were found between the two types of calls.Given the extensive cognitive abilities of corvids and the fact that referential signals were once thought to be unique to primates,these findings are important for expanding our understanding of social communication and language evolution.
基金supported by National Key Research and Development Program of China(2022YFD1200300)Jiangsu Key R&D Program(BE2022384)the Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP)(No.10)。
文摘Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2022R1A2C1091553 to Nam-Chon Paek and 2022R1F1A1075022 to Kiyoon Kang)。
文摘Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescence.The expression of ONAC016 increased rapidly in rice leaves during the progression of dark-induced and natural senescence.The onac016-1 knockout mutant showed a delayed leaf yellowing phenotype,whereas the overexpression of ONAC016 accelerated leaf senescence.Notably,ONAC016 expression was upregulated by abscisic acid(ABA),and thus detached leaves of the onac016-1 mutant remained green much longer under ABA treatment.Quantitative RT-PCR analysis showed that ONAC016 upregulates the genes associated with chlorophyll degradation,senescence,and ABA signaling.Yeast one-hybrid and dual-luciferase assays revealed that ONAC016 binds directly to the promoter regions of OsNAP,a key gene involved in chlorophyll degradation and ABA-induced senescence.Taken together,these results suggest that ONAC016 plays an important role in promoting leaf senescence through the ABA signaling pathway involving OsNAP.
基金supported by the National Natural Science Foundation of China(81503187)。
文摘Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金This work was financially supported by the Second Batch of Medical and Health Science and Technology Plan(self-financing)Projects in Shantou in 2020,Shantou Science and Technology Bureau Document Shantou([2020]No.58).
文摘Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the underlying molecular mechanisms by which curcumin inhibits CRC.Methods:HT29 and SW480 cells were treated with curcumin or/and Doxycycline(DOX),and cell viability,colony forming ability,migration and invasion were confirmed by cell counting kit-8(CCK-8),colony forming,Transwell assays.And Yes-associated protein 1(YAP)and PDZ-binding motif(TAZ)signaling-related genes or proteins were analyzed using reverse transcription quantitative real-time PCR(RT-qPCR),western blot,and immunofluorescence assays.Then nude mice xenograft tumor model was constructed,YAP and Ki67 expressions were tested by immunohistochemistry(IHC)staining.Results:In our study,we proved that curcumin significantly inhibited the CRC cell viability,cell migration,and cell invasion abilities.In addition,curcumin inhibited YAP and Transcriptional coactivator with TAZ or the YAP/TAZ signaling axis in CRC cells.Further,in the nude mice model,curcumin treatment significantly decreased the size and weight of xenotransplant tumors.Conclusion:Therefore,curcumin significantly inhibited CRC development and invasion by regulating the YAP/TAZ signaling axis.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA26040304)。
文摘Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
基金Open Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake,Grant Number HZHLAB2201.
文摘Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.
文摘Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways.
基金supported by grants from the National Natural Science Foundation of China(No.82272986 to SY)the Natural Science Foundation of Guangdong Province,China(No.2023A1515010230 to SY)+1 种基金the Science and Technology Foundation of Shenzhen(No.JCYJ20220531094805012 to SY)the Scientific Research Project of Shenzhen Pingshan District Health System(202060 to SY).
文摘Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.
基金National Natural Science Foundation of China(No.82360934)Science and Technology Innovation Leading Talents Project of Xinjiang Uygur Autonomous Region(No.2022TSYCLJ0007)+1 种基金Xinjiang Uygur Autonomous Region Key Research and Development Task Special Project(No.2021B03006)Natural Science Foundat ion of Xinj iang Uygur Autonomous Region(No.2022D01C170,2022D01C171)。
文摘Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control,IL-1β,IL-1β+BSBT(L),IL-1β+BSBT(M),and IL-1β+BSBT(H)groups(5%,10%and 15%BSBT-containing serum),and then 24h after intervention respectively,the cell proliferation and Apoptosis rate;Western blot detected the expression levels of Bcl-2,BAX,Caspase-3,SOX9,NF-κB p65,MMP-13 proteins in chondrocytes.ELISA detected the levels of TNF-α,IL-6,and bFGF in the supernatants of chondrocyte culture.Results:Compared with Control group,cell proliferation activity decreased,apoptosis rate increased,NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level increased,and SOX9 protein level and bFGF level decreased in IL-1βgroup;compared with IL-1βgroup,different concentrations of BSBT-containing serum group,cell proliferation activity increased,and apoptosis rate decreased.NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level decreased,SOX9 protein level and bFGF level increased;compared with IL-1β+BSBT(L)group,cell proliferation activity increased,apoptosis rate decreased in IL-1β+BSBT(M)and IL-1β+BSBT(H)groups,and NF-κB p65,MMP-13 protein level and TNF-αlevel decreased.13 protein levels and TNF-αand IL-6 levels decreased,and SOX9 protein levels and bFGF levels increased.Conclusion:BSBT-containing serum may promote IL-1β-induced proliferation of chondrocytes,reduce apoptosis,improve the microenvironment of chondrocytes,and promote cartilage repair through the SOX9/NF-κB/MMP-13 signaling pathway.
基金supported by the National Key Research and Development Program of China(2022YFF10002020)Sichuan Science and Technology Program,China(2021YFYZ0007 and 2021YFYZ0031).
文摘MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two chicken(Gallus gallus;Gga)miR-181-5p family members widely expressed in various tissues,specifically miR-181a-5p and miR-181b-5p.Besides,the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.Functionally,miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin(MyoG),myogenic differentiation 1(MyoD1),and myosin heavy chain(MyHC),meanwhile accelerating the myotube formation of skeletal muscle satellite cells(SMSCs).Mechanistically,miR-181a-5p and miR-181b-5p directly bind to the 3′untranslated region(UTR)of the transforming growth factor beta receptor 1(TGFBR1)mRNA,further reducing the expression of TGFBR1.TGFBR1 is a key Transforming growth factor beta(TGF-β)signaling transduction receptor and had a negative function in muscle cell differentiation.Furthermore,knockdown of TGFBR1 facilitated the expression of chicken myogenic factors,boosted myotube formation,and decreased the SMAD family member 2/3(SMAD2/3)phosphorylation in chicken SMSCs.SMAD2/3 are downstream of TGF-βsignaling,and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-βsignaling transduction,which resulted in promoting chicken skeletal muscle development.
文摘BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.