Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the settin...The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.展开更多
The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,...The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.展开更多
A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and E...A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
BACKGROUND Toxic epidermal necrolysis(TEN)is a life-threatening dermatological emergency mainly induced by drug hypersensitivity reactions.Standard management includes discontinuation of culprit drug and application o...BACKGROUND Toxic epidermal necrolysis(TEN)is a life-threatening dermatological emergency mainly induced by drug hypersensitivity reactions.Standard management includes discontinuation of culprit drug and application of immunomodulatory therapy.However,mortality remains high due to complications like septic shock and multiorgan failures.Innovative approaches for skin care are crucial.This report introduces borneol-gypsum,a traditional Chinese drug but a novel dressing serving as an adjuvant of TEN therapy,might significantly improve skin conditions and patient outcomes in TEN.CASE SUMMARY A 38-year-old woman diagnosed with eosinophilic granulomatosis with polyangiitis experienced gangrenous complications and motor nerve involvement.After initial treatment of high-dose corticosteroids and cyclophosphamide,symptom of foot drop improved,absolute eosinophil counts decreased,while limb pain sustained.Duloxetine was added to alleviate her symptom.Subsequently,TEN developed.Additional topical application of borneol-gypsum dressing not only protected the skin lesions from infection but also significantly eased localized pain.This approach demonstrated its merit in TEN management by promoting skin healing and potentially reducing infection risks.CONCLUSION Borneol-gypsum dressing is a promising adjuvant that could significantly improve TEN management,skin regeneration,and patient comfort.展开更多
Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. B...Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.展开更多
In response to the basic policy of green and low-carbon circular development to solve resource,environmental and ecological problems,gypsum is considered to be a flling material for mine backflling.To explore the pote...In response to the basic policy of green and low-carbon circular development to solve resource,environmental and ecological problems,gypsum is considered to be a flling material for mine backflling.To explore the potential risks of gypsum to the groundwater environment due to the backflling of abandoned mines,a sequential batch leaching experiment was carried out in this paper,which used three types of industrial waste gypsum,namely,phosphorus gypsum(PG),titanium gypsum(TG)and fue gas desulfurization gypsum(FGDG).COMSOL Multiphysics 5.4 software was used to simulate and solve the migration process of the leached metal elements in the mine foor when these three gypsum types were used as flling materials to observe the concentration distributions and difusion distances of the metal elements from these three gypsum types in the mine foor.The results show that(1)during repeated contact of the three types of industrial waste gypsum with the leaching medium,the pH levels changed,and the changes in pH afected the leaching patterns for the heavy metal elements in the gypsum.(2)Based on the concentrations of the metal elements that were leached from the three types of gypsum,it can be determined that these three types of gypsum are not classifed as hazardous solid wastes,but they cannot be ruled out with regard to their risk to the groundwater environment when they are used as mine flling materials.(3)When the three types of gypsum are used as flling materials,the concentration distributions of the metal elements and their migration distances all exhibit signifcant changes over time.The concentration distributions,difusion rates and migration distances of the metal elements from the diferent gypsum types are afected by their initial concentrations in the leachate.The maximum migration distances of Zn in the foor from the PG,FGDG and TG are 8.2,8.1 and 7.5 m,respectively.展开更多
In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3P...In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.展开更多
Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement co...Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.展开更多
The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-excha...The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.展开更多
In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initia...In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initiative, a field trial spanning two consecutive seasons (2019/20-2020/21) was conducted under saline conditions. The primary objective was to evaluate the influence of various compost sources, including vermicompost at a rate of 0.5 ton·fed<sup>-1</sup> and plant residues compost at a rate of 5.0 ton·fed<sup>-1</sup>, as main plots. Subplots were established by applying agricultural gypsum, both in the presence and absence of gypsum requirements. Additionally, sub-subplots were created by externally applying cobalt at a rate of 10.0 mg·L<sup>-1</sup>, with one sub-subplot receiving foliar cobalt application and the other not. The trial sought to assess the growth performance, chemical composition, enzymatic antioxidants, yield, and quality of cabbage plants (Brassica oleracea var. capitata L.) cultivated in saline soil. According to the findings, cabbage plants exhibited the most favorable response in terms of plant height, chlorophyll content, carotene levels, leaf area, nitrogen (N), phosphorus (P), potassium (K), head yield, vitamin C, and total dissolved solids (TDS) when treated with vermicompost, followed by plant compost. Conversely, plants grown without compost exhibited the least improvement in performance. Cabbage treated with agricultural gypsum requirements showed better performance than those without gypsum amendment. Moreover, plants subjected to cobalt spray demonstrated the highest growth, yield, and quality parameters compared to those without cobalt foliar application. In contrast, the control group (plants without the studied treatments) displayed the highest levels of enzymatic antioxidants, specifically catalase and peroxidase. This indicates that soil salinity stress led to an increase in catalase and peroxidase production in cabbage plants as a defense against the harmful impact of reactive oxygen species (ROS) resulting from soil salinity stress. The applied treatments (compost, gypsum, and cobalt) led to a reduction in the cabbage plant’s inherent production of catalase and peroxidase. Generally, the combined treatment of vermicompost × gypsum requirements × cobalt proved effective in mitigating the detrimental effects of soil salinity on cabbage plants. These findings hold significance for farmers and policymakers aiming to enhance agricultural productivity in regions affected by soil salinity. Additionally, further research can explore the long-term effects of these treatments on soil health and crop sustainability.展开更多
Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt b...Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt beds on hydrocarbon reservoirs primarily focused on their excellent sealing property as cap rocks.However,an increasing number of exploration discoveries have shown that gypsum/salt beds have the potential to promote the formation of high-quality source rocks and hydrocarbon reservoirs.Gypsum/salt beds influence the generation,preservation and accumulation of hydrocarbons.Based on the systematic analysis of the generation of hydrocarbons in global gypsum/saltbearing sequences,the study discussed the control of gypsum/salt beds on play elements,and explore the relationship between the development of gypsum/salt beds and global large-and medium-scale hydrocarbon reservoirs.Furthermore,we analyzed the correlation between typical gypsum/saltbearing sequences and their hydrocarbon generation potentials in China.In-depth analysis shows three patterns in terms of the spatial superimposition of gypsum/salt beds and source rocks,that is,postsalt pattern,inter-salt pattern and pre-salt pattern.Among others,the source rocks of the inter-salt pattern are widely developed in salt basins and of great potential for hydrocarbon exploration.展开更多
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru...To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.展开更多
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly...Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.展开更多
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
文摘The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.
基金supported by the National Key Research and Development Program of China(2018YFC1900206-2)Science&Technology Plan Projects of Guizhou Province(Qiankehe Service Enterprises[2018]4011)Science and Technology Support Plan Project of Guizhou Provincial:Qiankehe Support[2021]General 487。
文摘The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.
基金supported by the National Natural Science Foundation of China(No.42307521)the China Postdoctoral Science Foundation(No.2023M742934)。
文摘A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
文摘BACKGROUND Toxic epidermal necrolysis(TEN)is a life-threatening dermatological emergency mainly induced by drug hypersensitivity reactions.Standard management includes discontinuation of culprit drug and application of immunomodulatory therapy.However,mortality remains high due to complications like septic shock and multiorgan failures.Innovative approaches for skin care are crucial.This report introduces borneol-gypsum,a traditional Chinese drug but a novel dressing serving as an adjuvant of TEN therapy,might significantly improve skin conditions and patient outcomes in TEN.CASE SUMMARY A 38-year-old woman diagnosed with eosinophilic granulomatosis with polyangiitis experienced gangrenous complications and motor nerve involvement.After initial treatment of high-dose corticosteroids and cyclophosphamide,symptom of foot drop improved,absolute eosinophil counts decreased,while limb pain sustained.Duloxetine was added to alleviate her symptom.Subsequently,TEN developed.Additional topical application of borneol-gypsum dressing not only protected the skin lesions from infection but also significantly eased localized pain.This approach demonstrated its merit in TEN management by promoting skin healing and potentially reducing infection risks.CONCLUSION Borneol-gypsum dressing is a promising adjuvant that could significantly improve TEN management,skin regeneration,and patient comfort.
文摘Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.
基金The authors are grateful to the Xuzhou Key Social Research and Development Program(KC18134)for providing fnancial support for this study。
文摘In response to the basic policy of green and low-carbon circular development to solve resource,environmental and ecological problems,gypsum is considered to be a flling material for mine backflling.To explore the potential risks of gypsum to the groundwater environment due to the backflling of abandoned mines,a sequential batch leaching experiment was carried out in this paper,which used three types of industrial waste gypsum,namely,phosphorus gypsum(PG),titanium gypsum(TG)and fue gas desulfurization gypsum(FGDG).COMSOL Multiphysics 5.4 software was used to simulate and solve the migration process of the leached metal elements in the mine foor when these three gypsum types were used as flling materials to observe the concentration distributions and difusion distances of the metal elements from these three gypsum types in the mine foor.The results show that(1)during repeated contact of the three types of industrial waste gypsum with the leaching medium,the pH levels changed,and the changes in pH afected the leaching patterns for the heavy metal elements in the gypsum.(2)Based on the concentrations of the metal elements that were leached from the three types of gypsum,it can be determined that these three types of gypsum are not classifed as hazardous solid wastes,but they cannot be ruled out with regard to their risk to the groundwater environment when they are used as mine flling materials.(3)When the three types of gypsum are used as flling materials,the concentration distributions of the metal elements and their migration distances all exhibit signifcant changes over time.The concentration distributions,difusion rates and migration distances of the metal elements from the diferent gypsum types are afected by their initial concentrations in the leachate.The maximum migration distances of Zn in the foor from the PG,FGDG and TG are 8.2,8.1 and 7.5 m,respectively.
文摘In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.
基金National Natural Science Foundation of China(5210090341)Natural Science Foundation of Henan Province(202300410270)Fund of Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power,China(Grading No.YK-2021-39).
文摘Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.
基金supported by the National Natural Science Foundation of China(No.52279138)supported by Scientific Research Project of Shanxi Province(2018SF-367).
文摘The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.
文摘In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initiative, a field trial spanning two consecutive seasons (2019/20-2020/21) was conducted under saline conditions. The primary objective was to evaluate the influence of various compost sources, including vermicompost at a rate of 0.5 ton·fed<sup>-1</sup> and plant residues compost at a rate of 5.0 ton·fed<sup>-1</sup>, as main plots. Subplots were established by applying agricultural gypsum, both in the presence and absence of gypsum requirements. Additionally, sub-subplots were created by externally applying cobalt at a rate of 10.0 mg·L<sup>-1</sup>, with one sub-subplot receiving foliar cobalt application and the other not. The trial sought to assess the growth performance, chemical composition, enzymatic antioxidants, yield, and quality of cabbage plants (Brassica oleracea var. capitata L.) cultivated in saline soil. According to the findings, cabbage plants exhibited the most favorable response in terms of plant height, chlorophyll content, carotene levels, leaf area, nitrogen (N), phosphorus (P), potassium (K), head yield, vitamin C, and total dissolved solids (TDS) when treated with vermicompost, followed by plant compost. Conversely, plants grown without compost exhibited the least improvement in performance. Cabbage treated with agricultural gypsum requirements showed better performance than those without gypsum amendment. Moreover, plants subjected to cobalt spray demonstrated the highest growth, yield, and quality parameters compared to those without cobalt foliar application. In contrast, the control group (plants without the studied treatments) displayed the highest levels of enzymatic antioxidants, specifically catalase and peroxidase. This indicates that soil salinity stress led to an increase in catalase and peroxidase production in cabbage plants as a defense against the harmful impact of reactive oxygen species (ROS) resulting from soil salinity stress. The applied treatments (compost, gypsum, and cobalt) led to a reduction in the cabbage plant’s inherent production of catalase and peroxidase. Generally, the combined treatment of vermicompost × gypsum requirements × cobalt proved effective in mitigating the detrimental effects of soil salinity on cabbage plants. These findings hold significance for farmers and policymakers aiming to enhance agricultural productivity in regions affected by soil salinity. Additionally, further research can explore the long-term effects of these treatments on soil health and crop sustainability.
基金This study was funded by a key project of the National Natural Science Fund of China(41930426)a key project of the Petrochemical Joint Fund(U1663201).
文摘Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt beds on hydrocarbon reservoirs primarily focused on their excellent sealing property as cap rocks.However,an increasing number of exploration discoveries have shown that gypsum/salt beds have the potential to promote the formation of high-quality source rocks and hydrocarbon reservoirs.Gypsum/salt beds influence the generation,preservation and accumulation of hydrocarbons.Based on the systematic analysis of the generation of hydrocarbons in global gypsum/saltbearing sequences,the study discussed the control of gypsum/salt beds on play elements,and explore the relationship between the development of gypsum/salt beds and global large-and medium-scale hydrocarbon reservoirs.Furthermore,we analyzed the correlation between typical gypsum/saltbearing sequences and their hydrocarbon generation potentials in China.In-depth analysis shows three patterns in terms of the spatial superimposition of gypsum/salt beds and source rocks,that is,postsalt pattern,inter-salt pattern and pre-salt pattern.Among others,the source rocks of the inter-salt pattern are widely developed in salt basins and of great potential for hydrocarbon exploration.
基金Funded by the National Natural Science Foundation of China (Nos. 52278269, 52278268, 52178264, 52108238)Tianjin Outstanding Young Scholars Science Fund Project (No. 22JCJQJC00020)State Key Laboratory of Green Building Materials Open Foundation (No. 2021GBM08)。
文摘To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.
基金supported by the Degradable Plastics Engineering Research Center of Yunnan Provincial Education Department(KKPU202205001).
文摘Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.