The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the inte face...The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the inte face between graphene and h-BN layers were also reported. The metal-semiconductor transform of the G/BN material can be achieved by adjusting the stacking form of the h-BN layers or changing the proportion of graphene layers in the unit cell. An electrostatic potential well was found at the interface. Due to the potential well and the only dispersion correlation at the interface, the dielectric constant εzz in vertical direction was independent on the variety of the thickness or the proportion of the compositions in an unit cell.展开更多
Two-dimensional(2D) layered materials,such as graphene,hexagonal boron nitride(h-BN),molybdenum disulfide(Mo S_2/,have attracted tremendous interest due to their atom-thickness structures and excellent physical p...Two-dimensional(2D) layered materials,such as graphene,hexagonal boron nitride(h-BN),molybdenum disulfide(Mo S_2/,have attracted tremendous interest due to their atom-thickness structures and excellent physical properties.h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface,being free of dangling bonds and surface charge traps,especially the large-band-gap insulativity.h-BN involved vertical heterostructures have been widely exploited during the past few years.Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance,and provide further possibilities for device engineering.Besides,a series of intriguing physical phenomena are observed in certain vertical heterostructures,such as superlattice potential induced replication of Dirac points,band gap tuning,Hofstadter butterfly states,gate-dependent pseudospin mixing.Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN,and review the novel properties as well as the potential applications of the heterostructures composed of h-BN.展开更多
基金Supported by the National Natural Science Foundation of China(No.21573088) and the Financial Support from Latvian Government Fellowship for Research in Latvia.
文摘The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the inte face between graphene and h-BN layers were also reported. The metal-semiconductor transform of the G/BN material can be achieved by adjusting the stacking form of the h-BN layers or changing the proportion of graphene layers in the unit cell. An electrostatic potential well was found at the interface. Due to the potential well and the only dispersion correlation at the interface, the dielectric constant εzz in vertical direction was independent on the variety of the thickness or the proportion of the compositions in an unit cell.
基金Project supported by the National Natural Science Foundation of China(Nos.61390502,21373068)the National Basic Research Program of China(No.2013CB632900)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51521003)the Self-Planned Task of State Key Laboratory of Robotics and System(No.SKLRS201607B)
文摘Two-dimensional(2D) layered materials,such as graphene,hexagonal boron nitride(h-BN),molybdenum disulfide(Mo S_2/,have attracted tremendous interest due to their atom-thickness structures and excellent physical properties.h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface,being free of dangling bonds and surface charge traps,especially the large-band-gap insulativity.h-BN involved vertical heterostructures have been widely exploited during the past few years.Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance,and provide further possibilities for device engineering.Besides,a series of intriguing physical phenomena are observed in certain vertical heterostructures,such as superlattice potential induced replication of Dirac points,band gap tuning,Hofstadter butterfly states,gate-dependent pseudospin mixing.Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN,and review the novel properties as well as the potential applications of the heterostructures composed of h-BN.