This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system ...The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.展开更多
The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature...The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).展开更多
It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary l...It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
In this paper a class of cooperative Lotka-Volterra population system with time delay is considered. Some sufficient conditions on the existence and globally asymptotically stability for the asymptotically periodic so...In this paper a class of cooperative Lotka-Volterra population system with time delay is considered. Some sufficient conditions on the existence and globally asymptotically stability for the asymptotically periodic solution of the system are established by using the Lyapunov function method and the method given in Fengying Wei and Wang Ke (Applied Mathematics and Computation 182 (2006) 161-165).展开更多
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficie...This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results.展开更多
Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given whic...Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given which differ from those obtained in the former literature.展开更多
In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuou...In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed cellular neural network is asymptotic mean-square stability. By using some stochastic analysis techniques and Lyapunov-Krasovskii functional,some conditions are derived to ensure that the cellular neural networks with random delay is asymptotical mean-square stability. A numerical example is exploited to show the vadlidness of the established results.展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr...In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of ...The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.展开更多
In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributio...In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributions of the solution. We prove that the densities can converge in L1 to an invariant density.展开更多
A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
文摘The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.
文摘The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).
文摘It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
文摘In this paper a class of cooperative Lotka-Volterra population system with time delay is considered. Some sufficient conditions on the existence and globally asymptotically stability for the asymptotically periodic solution of the system are established by using the Lyapunov function method and the method given in Fengying Wei and Wang Ke (Applied Mathematics and Computation 182 (2006) 161-165).
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY18F030023,LY17F030016,LQ18F030015,and LY18F020028)the National Natural Science Foundation of China(Grant Nos.61503338,61773348,and 61972354).
文摘This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results.
文摘Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given which differ from those obtained in the former literature.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10771044)the Natural Science Foundation of Hunan Province(Grant No.09JJ6006)+2 种基金the Excellent Youth Foundation of Educational Committee of Hunan Provincial (Grant No.08B005)the Hunan Postdoctoral Scientific Pro-gram(Grant No.2009RS3020)the Scientific Research Funds of Hunan Provincial Education Department of China(Grant No.09C059)
文摘In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed cellular neural network is asymptotic mean-square stability. By using some stochastic analysis techniques and Lyapunov-Krasovskii functional,some conditions are derived to ensure that the cellular neural networks with random delay is asymptotical mean-square stability. A numerical example is exploited to show the vadlidness of the established results.
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
文摘In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University,NSFC of China(11371085 and 11201008)the Ph.D.Programs Foundation of Ministry of China(200918)
文摘In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributions of the solution. We prove that the densities can converge in L1 to an invariant density.
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.