Let G be a finite group andНbe a Hartley set of G.In this paper,we prove the existence and conjugacy ofН-injectors of G and describe the characterization of injectors via radicals.As applications,some known results ...Let G be a finite group andНbe a Hartley set of G.In this paper,we prove the existence and conjugacy ofН-injectors of G and describe the characterization of injectors via radicals.As applications,some known results are directly followed.展开更多
In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime ...In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime and the H-Jacobson radicals of A and their relations with the prime and the Jacobson radicals of A#H, respectively. In particular, we prove that if A is H-semiprimitive, then A^fH is semiprimitive provided that all irreducible representations of A are finite-dimensional, or A is an affine PI-algebra over k and k is a perfect field, or A is locally finite. Moreover, we prove that A=#=H is semiprime provided that A is an H-semiprime PI-algebra, generalizing to the setting of partial actions the known results for global actions of Hopf algebras.展开更多
文摘Let G be a finite group andНbe a Hartley set of G.In this paper,we prove the existence and conjugacy ofН-injectors of G and describe the characterization of injectors via radicals.As applications,some known results are directly followed.
文摘In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime and the H-Jacobson radicals of A and their relations with the prime and the Jacobson radicals of A#H, respectively. In particular, we prove that if A is H-semiprimitive, then A^fH is semiprimitive provided that all irreducible representations of A are finite-dimensional, or A is an affine PI-algebra over k and k is a perfect field, or A is locally finite. Moreover, we prove that A=#=H is semiprime provided that A is an H-semiprime PI-algebra, generalizing to the setting of partial actions the known results for global actions of Hopf algebras.