The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes o...The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes of SARS-CoV-2 from the GISAID EpiFlu TM database to investigate the evolution and human-to-human transmissions of SARS-CoV-2 in the first two months of the outbreak.We constructed haplotypes of the SARS-CoV-2 genomes, performed phylogenomic analyses and estimated the potential population size changes of the virus. The date of population expansion was calculated based on the expansion parameter tau(τ)using the formula t=τ/2 u. A total of 120 substitution sites with 119 codons, including 79 non-synonymous and 40 synonymous substitutions, were found in eight coding-regions in the SARS-CoV-2 genomes.Forty non-synonymous substitutions are potentially associated with virus adaptation. No combinations were detected. The 58 haplotypes(31 found in samples from China and 31 from outside China)were identified in 93 viral genomes under study and could be classified into five groups. By applying the reported bat coronavirus genome(bat-RaTG13-CoV)as the outgroup, we found that haplotypes H13 and H38 might be considered as ancestral haplotypes,and later H1 was derived from the intermediate haplotype H3. The population size of the SARS-CoV-2 was estimated to have undergone a recent expansion on 06 January 2020, and an early expansion on 08 December 2019. Furthermore,phyloepidemiologic approaches have recovered specific directions of human-to-human transmissions and the potential sources for international infected cases.展开更多
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the a...The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARSCoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.展开更多
Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controll...Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here,different aged Chinese tree shrews(adult group, 1 year old;old group, 5–6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days postinoculation(dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3,5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase(AST) and blood urea nitrogen(BUN). Histological analysis of lung tissues from animals at 3 dpi(adult group) and 7 dpi(old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.展开更多
基金Ten Thousand Talents Program of Yunnan for Top-notch Young Talentsthe open research project of“Cross-Cooperative Team”of the Germplasm Bank of Wild Species,Kunming Institute of Botany,Chinese Academy of Sciences.
文摘The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes of SARS-CoV-2 from the GISAID EpiFlu TM database to investigate the evolution and human-to-human transmissions of SARS-CoV-2 in the first two months of the outbreak.We constructed haplotypes of the SARS-CoV-2 genomes, performed phylogenomic analyses and estimated the potential population size changes of the virus. The date of population expansion was calculated based on the expansion parameter tau(τ)using the formula t=τ/2 u. A total of 120 substitution sites with 119 codons, including 79 non-synonymous and 40 synonymous substitutions, were found in eight coding-regions in the SARS-CoV-2 genomes.Forty non-synonymous substitutions are potentially associated with virus adaptation. No combinations were detected. The 58 haplotypes(31 found in samples from China and 31 from outside China)were identified in 93 viral genomes under study and could be classified into five groups. By applying the reported bat coronavirus genome(bat-RaTG13-CoV)as the outgroup, we found that haplotypes H13 and H38 might be considered as ancestral haplotypes,and later H1 was derived from the intermediate haplotype H3. The population size of the SARS-CoV-2 was estimated to have undergone a recent expansion on 06 January 2020, and an early expansion on 08 December 2019. Furthermore,phyloepidemiologic approaches have recovered specific directions of human-to-human transmissions and the potential sources for international infected cases.
文摘The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19/SARS-CoV-2/2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARSCoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.
基金partly supported by the National Key R&D Program of China(2020YFC0842000 to Y.T.Z.)National Natural Science Foundation of China(U1902215 to Y.G.Y.)+2 种基金National Science and Technology Major Projects of Infectious Disease Funds(2017ZX10304402 to Y.T.Z.)Yunnan Province(2018FB046 to D.D.Y.)CAS“Light of West China”Program(xbzg-zdsys-201909to Y.G.Y.and Y.T.Z.)。
文摘Thecoronavirusdisease2019(COVID-19)pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here,different aged Chinese tree shrews(adult group, 1 year old;old group, 5–6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days postinoculation(dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3,5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase(AST) and blood urea nitrogen(BUN). Histological analysis of lung tissues from animals at 3 dpi(adult group) and 7 dpi(old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.