Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurologic...Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.展开更多
Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell prolife...Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.展开更多
In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. ...In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.展开更多
In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) ...In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .展开更多
Objective:The long QT syndrome type 2 is caused by the loss-of-function mutations in the KCNH2 gene,which encodes hERG1,the voltage-gated potassium channel.The hERG1 channels conduct rapid delayed rectifier K^(+)curre...Objective:The long QT syndrome type 2 is caused by the loss-of-function mutations in the KCNH2 gene,which encodes hERG1,the voltage-gated potassium channel.The hERG1 channels conduct rapid delayed rectifier K^(+)currents(I_(Kr))in the human cardiac tissue.KCNH2 encodes 2 main isoforms-hERG1a and hERG1b,which assemble to form the homomeric or heteromeric hERG1 channels.However,the functional characteristics of the heteromeric hERG1 channels in long QT syndrome type 2 are not clear.In this study,a novel mutation in the N-terminus of hERG1a(F129l)was identified in a proband of long QT syndrome type 2.The purpose of this study was to identify the electrophysiological change of homomeric and heteromeric hERG1 channels with theF129l-hERG1a.Methods:Candidate genes were screened by direct sequencing.F129l-hERG1a was cloned in the pcDNA3.1 vector by site-directed mutagenesis.Then,the wild-type(WT)hERG1a and/or F129l-hERG1a were transiently expressed in the HEK293 cells with or without hERG1b co-expression.The expression levels of the transgenes,cellular distribution of hERG1a and hERG1b,and the electrophysiological features of the homomeric and the heteromeric hERG1 channels with the WT-hERG1a or F129l-hERG1a were analyzed using whole-cell patch-clamp electrophysiology,western blotting,and immunofluorescence techniques.Results:The proband was clinically diagnosed with long QT syndrome type 2 and carried a heterozygous mutation c.385T>A(F1291)in the KCNH2 gene.Electrophysiology study proved that the F129l substitution in hERG1a significantly decreased I_(Kr) in both the homomeric and heteromeric hERG1channels by 86%and 70%,respectively(WT-hERG1a(54.88±18.74)pA/pF vs.F129l-hERG1a(7.34±1.90)pA/pF,P<0.001;WT-hERG1a/hERG1b(89.92±24.51)pA/pF vs.F129l-hERG1a/hERG1b(26.54±9.83)pA/pF,P<0.001).The voltage dependence of I_(Kr) activation(V_(1/2) and k)was not affected by the mutation in both the homomeric and heteromeric hERG1 channels.The peak current densities and the kinetic characteristics of I_(Kr) were comparable for both WT/F129l-hERG1a and WT-hERG1a.The channel inactivation and deactivation analysis showed that F129l substitution did not affect deactivation of the homomeric hERG1a channel,but significantly accelerated the deactivation and recovery from inactivation of the heteromeric hERG1a/hERG1b channel based on the time constants of fast and slow recovery from deactivation F129l-hERG1a/hERG1b vs.WT-hERG1a/hERG1b(P<0.05).Western blotting and immunofluorescence labeling experiments showed that maturation and intracellular trafficking of the F129l-hERG1a protein was impaired and potentially increased the ratio of hERG1b to hERG1a in the F129l-hERG1a/hERG1b tetramer channel,thereby resulting in electrophysiological changes characteristic of the long QT syndrome type 2 pathology.Conclusions: I_(Kr) Was significantly reduced in the homomeric and heteromeric hERG1 channels with F129l-hERG1a.The F129l mutation significantly accelerated the deactivation and recovery from inactivation of the heteromeric F129l-hERG1a/hERG1b channel.F129l-hERG1a exhibited impaired maturation and intracellular trafficking,thereby potentially increasing the ratio of the hERG1b to hERG1a stoichiometry in the hERG1 tetrameric channel.These changes demonstrated the importance of the heteromeric hERG1 channel in long QT syndrome type 2 pathophysiology.展开更多
A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulati...A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.展开更多
The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect th...The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.展开更多
基金NJ Governor’s Council for Medical Research and Treatment of Autism predoctoral fellowship (CAUT23AFP015) to ABNational Science Foundation grant (2030348) to FS。
文摘Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
基金supported by a grant from the Natural Science Foundation of China(30772128)
文摘Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.
基金a grant from National Science Foundation for Distinguished Young Scholars of China (No. 30225038)
文摘In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.
基金Supported by the National Natural Science Foundation of China(61001167,61172149)~~
文摘In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .
文摘Objective:The long QT syndrome type 2 is caused by the loss-of-function mutations in the KCNH2 gene,which encodes hERG1,the voltage-gated potassium channel.The hERG1 channels conduct rapid delayed rectifier K^(+)currents(I_(Kr))in the human cardiac tissue.KCNH2 encodes 2 main isoforms-hERG1a and hERG1b,which assemble to form the homomeric or heteromeric hERG1 channels.However,the functional characteristics of the heteromeric hERG1 channels in long QT syndrome type 2 are not clear.In this study,a novel mutation in the N-terminus of hERG1a(F129l)was identified in a proband of long QT syndrome type 2.The purpose of this study was to identify the electrophysiological change of homomeric and heteromeric hERG1 channels with theF129l-hERG1a.Methods:Candidate genes were screened by direct sequencing.F129l-hERG1a was cloned in the pcDNA3.1 vector by site-directed mutagenesis.Then,the wild-type(WT)hERG1a and/or F129l-hERG1a were transiently expressed in the HEK293 cells with or without hERG1b co-expression.The expression levels of the transgenes,cellular distribution of hERG1a and hERG1b,and the electrophysiological features of the homomeric and the heteromeric hERG1 channels with the WT-hERG1a or F129l-hERG1a were analyzed using whole-cell patch-clamp electrophysiology,western blotting,and immunofluorescence techniques.Results:The proband was clinically diagnosed with long QT syndrome type 2 and carried a heterozygous mutation c.385T>A(F1291)in the KCNH2 gene.Electrophysiology study proved that the F129l substitution in hERG1a significantly decreased I_(Kr) in both the homomeric and heteromeric hERG1channels by 86%and 70%,respectively(WT-hERG1a(54.88±18.74)pA/pF vs.F129l-hERG1a(7.34±1.90)pA/pF,P<0.001;WT-hERG1a/hERG1b(89.92±24.51)pA/pF vs.F129l-hERG1a/hERG1b(26.54±9.83)pA/pF,P<0.001).The voltage dependence of I_(Kr) activation(V_(1/2) and k)was not affected by the mutation in both the homomeric and heteromeric hERG1 channels.The peak current densities and the kinetic characteristics of I_(Kr) were comparable for both WT/F129l-hERG1a and WT-hERG1a.The channel inactivation and deactivation analysis showed that F129l substitution did not affect deactivation of the homomeric hERG1a channel,but significantly accelerated the deactivation and recovery from inactivation of the heteromeric hERG1a/hERG1b channel based on the time constants of fast and slow recovery from deactivation F129l-hERG1a/hERG1b vs.WT-hERG1a/hERG1b(P<0.05).Western blotting and immunofluorescence labeling experiments showed that maturation and intracellular trafficking of the F129l-hERG1a protein was impaired and potentially increased the ratio of hERG1b to hERG1a in the F129l-hERG1a/hERG1b tetramer channel,thereby resulting in electrophysiological changes characteristic of the long QT syndrome type 2 pathology.Conclusions: I_(Kr) Was significantly reduced in the homomeric and heteromeric hERG1 channels with F129l-hERG1a.The F129l mutation significantly accelerated the deactivation and recovery from inactivation of the heteromeric F129l-hERG1a/hERG1b channel.F129l-hERG1a exhibited impaired maturation and intracellular trafficking,thereby potentially increasing the ratio of the hERG1b to hERG1a stoichiometry in the hERG1 tetrameric channel.These changes demonstrated the importance of the heteromeric hERG1 channel in long QT syndrome type 2 pathophysiology.
基金National Natura1 Science Foundation of China (No. 39870372),StateKey Basic Research and Development Project (No.G1999011700)
文摘A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.
基金supported by grants from the National Natural Science Foundation of China (No. 81072001)the Natural Science Foundation of Hubei Province, China (No.2011CDB556)
文摘The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.