The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in...The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in the past two decades,but there is limited knowledge about the population and habitat changes of the Hooded Cranes.This study investigated the population size and distribution of wintering Hooded Cranes at Chongming Dongtan from 2000 to 2021.We used remote sensing images combined with a vegetation classification algorithm to analyse the distribution of saltmarsh vegetation.The quadrat method was used to investigate the density and weight of the underground corms of Sea Bulrush(Scirpus mariquter),the main food on tideland for the Hooded Cranes.From 2000 to 2021,the population number of wintering Hooded Cranes at Chongming Dongtan remained stable at approximately 100.In 2000,the area of Scirpus spp.and Common Reed(Phragmites australis)accounted for approximately half of the total saltmarsh area at Chongming Dongtan,respectively.The invasive Smooth Cordgrass(Spartina alterniflora)rapidly expanded on tideland in the 2000s while the Scirpus spp.was competed out and thus significantly reduced in area.After the implementation of an ecological project to control Smooth Cordgrass and to restore Scirpus spp.in the 2010s,the area of the Smooth Cordgrass decreased considerably while the area of Scirpus spp.increased.The corms of Sea Bulrush decreased on the southeastern tideland during the study period,which might be the cause of the northward movement of the foraging Hooded Cranes on tideland.We also found Hooded Cranes foraged crops in the nearby farmland in mid-winter,causing human-bird conflicts in the recent decade.Our results found that changes in habitat and food conditions on tideland impacted wintering Hooded Cranes.Foraging in farmland with human disturbance in the recent decade might be related to insufficient food on tideland.We suggest active intervention to accelerate the restoration of Sea Bulrush on tideland and reduce human disturbance in farmland to improve the habitat quality of the wintering Hooded Crane at Chongming Dongtan.展开更多
The large yellow croaker(Larimichthys crocea)is one of the most economically valuable marine fsh in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few de...The large yellow croaker(Larimichthys crocea)is one of the most economically valuable marine fsh in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades.The stock division and species distribution,which have important implications for ecological protection,germplasm recovery,and fshery resource management,have been debated since the 1960s.However,it is still uncertain even how many stocks exist in this species.To address this,we evaluated the fne-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers.Compared with the widely accepted stock boundaries proposed in the 1960s,our results revealed that a climate-driven habitat change probably occurred between the Naozhou(Nanhai)Stock and the Ming-Yuedong(Mindong)Stock.The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait,accompanied by highly asymmetric introgression.In addition,we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas.The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes,whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations.These fndings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker,providing a basis for conservation,fsheries management and further evolutionary biology studies.展开更多
Gandaki River Basin(GRB) is part of the central Himalayan region, which provides habitat for numerous wild species. However, due to changes in climate and land cover, the habitats of many protected species are at risk...Gandaki River Basin(GRB) is part of the central Himalayan region, which provides habitat for numerous wild species. However, due to changes in climate and land cover, the habitats of many protected species are at risk. Based on the maximum entropy(MaxEnt) model, coupled with bioclimatic layers, land cover and DEM data, the impacts of environmental factors on habitat suitability of Himalayan Monal(Lophophorus impejanus), a national bird of Nepal, was quantified. This study further assessed the present and future habitat and distribution of the Himalayan Monal in the context of climate and land cover changes. The results of this study show that the highly suitable habitat of Himalayan Monal presently occupies around 749 km^2 within the northern, eastern and western parts, particularly protected areas such as Langtang National Park, Manaslu Conservation Area and Annapurna Conservation Area, while it is likely to decrease to 561 km^2 by 2050, primarily in the northern and northwestern parts(i.e., Chhyo, Tatopani, Humde and Chame). These expected changes indicate increasing risk for Himalayan Monal due to a decline in its suitable habitat area.展开更多
Conversion of natural environments to human-modified landscapes is continuing at an unprecedented rate,exerting fundamental influences on global biodiversity.Understanding how wildlife communities respond to landscape...Conversion of natural environments to human-modified landscapes is continuing at an unprecedented rate,exerting fundamental influences on global biodiversity.Understanding how wildlife communities respond to landscape modifications is critical to improve biodiversity conservation in human-dominated landscapes.In this study,we surveyed bird communities in three common habitats(i.e.,farmland,village,and forest)in the southern Anhui Mountainous Area during summer(August 2019)and winter(December 2020).The diversity metrics and species compositions of the avian communities were compared among the habitats,and the effects of land use composition in these habitats were tested.During the field surveys,we recorded 7599 birds of 120 species along 45 line transects of 1km in length.The land use compositions differed among habitats,and land use diversity was the highest in villages and lowest in forests.The species richness and bird abundance in the two human-dominated habitats(i.e.,farmland and village)were higher than those in forest in both seasons.Bird species composition also differed across habitat types in both seasons.Bird species feeding on vertebrates,fish and carrion,and species feeding on plants and seeds were mainly found in habitats with less construction lands and lower land use diversity,while omnivorous species and species feeding on fruits and nectar or on invertebrates were less affected by these two variables.The indicator species analysis showed that most species associated with forest feed on invertebrates,while species feeding on plants and seeds were more correlated with farmland and village.The results indicated that the conversion of natural habitats to human-dominated landscapes has pronounced impacts on bird communities in the study area.Human-dominated habitats harboured more avian species that deserve conservation attention.Meanwhile,bird conservations should not be relaxed in forests because there were more than 20 species that had a high specificity for forests.展开更多
Gandaki River Basin(GRB)is an important part of the central Himalayan region,which provides habitat for numerous wild species.However,climatic changes are making the habitat in this basin more vulnerable.This paper ai...Gandaki River Basin(GRB)is an important part of the central Himalayan region,which provides habitat for numerous wild species.However,climatic changes are making the habitat in this basin more vulnerable.This paper aims to assess the potential impacts of climate change on the spatial distributions of habitat changes for two vulnerable species,Himalayan black bear(Ursus thibetanus laniger)and common leopard(Panthera pardus fusca),using the maximum entropy(Max Ent)species distribution model.Species occurrence locations were used along with several bioclimatic and topographic variables(elevation,slope and aspect)to fit the model and predict the potential distributions(current and future)of the species.The results show that the highly suitable area of Himalayan black bear within the GRB currently encompasses around 1642 km^(2)(5.01%area of the basin),which is predicted to increase by 51 km^(2) in the future(2050).Similarly,the habitat of common leopard is estimated as 3999 km^(2)(12.19%of the GRB area),which is likely to increase to 4806 km^(2) in 2050.Spatially,the habitat of Himalayan black bear is predicted to increase in the eastern part(Baseri,Tatopani and north from Bhainse)and to decrease in the eastern(Somdang,Chhekampar),western(Burtibang and Bobang)and northern(Sangboche,Manang,Chhekampar)parts of the study area.Similarly,the habitat of common leopard is projected to decrease particularly in the eastern,western and southern parts of the basin,although it is estimated to be extended in the southeastern(Bhainse),western(Harichaur and northern Sandhikhark)and north-western(Sangboche)parts of the basin.To determine the habitat impact,the environmental variables such as elevation,Bio 15(precipitation seasonality)and Bio 16(precipitation of wettest quarter)highly contribute to habitat change of Himalayan black bear;while Bio 13(precipitation of wettest month)and Bio 15 are the main contributors for common leopard.Overall,this study predicted that the suitable habitat areas of both species are likely to be impacted by climate change at different altitudes in the future,and these are the areas that need more attention in order to protect these species.展开更多
Peleoecologlcel evidence end peleoclimatlc records indicate that there wee e plant polewerd migration in latitude and an upward shift In elevation with increased temperatures after the last glaciation. Recent studies ...Peleoecologlcel evidence end peleoclimatlc records indicate that there wee e plant polewerd migration in latitude and an upward shift In elevation with increased temperatures after the last glaciation. Recent studies have shown that global warming over the past 100 years has been having a noticeable effect on living systems. Current global warming Is causing a poleward and upward shift In the range of many plants and animals. Climate change, In connection with other global changes, is threatening the survival of a wide range of plant and animal species. This raises the question: can existing reserves really preserve current levels of biological diversity In the long term given the present rapid pace of climate change? The present paper deals with this question In the context of the responses of plants and animals to global climate change, based on a literature review. Consequently, we recommend expanding reserves towards the poles and/or towards higher altitudes, to permit species to shift their ranges to keep pace with global warming.展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFF1301004)the Science and Technology Department of Shanghai(21DZ1201902)the Shanghai Landscaping and City Appearance Administrative Bureau(G201610)。
文摘The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in the past two decades,but there is limited knowledge about the population and habitat changes of the Hooded Cranes.This study investigated the population size and distribution of wintering Hooded Cranes at Chongming Dongtan from 2000 to 2021.We used remote sensing images combined with a vegetation classification algorithm to analyse the distribution of saltmarsh vegetation.The quadrat method was used to investigate the density and weight of the underground corms of Sea Bulrush(Scirpus mariquter),the main food on tideland for the Hooded Cranes.From 2000 to 2021,the population number of wintering Hooded Cranes at Chongming Dongtan remained stable at approximately 100.In 2000,the area of Scirpus spp.and Common Reed(Phragmites australis)accounted for approximately half of the total saltmarsh area at Chongming Dongtan,respectively.The invasive Smooth Cordgrass(Spartina alterniflora)rapidly expanded on tideland in the 2000s while the Scirpus spp.was competed out and thus significantly reduced in area.After the implementation of an ecological project to control Smooth Cordgrass and to restore Scirpus spp.in the 2010s,the area of the Smooth Cordgrass decreased considerably while the area of Scirpus spp.increased.The corms of Sea Bulrush decreased on the southeastern tideland during the study period,which might be the cause of the northward movement of the foraging Hooded Cranes on tideland.We also found Hooded Cranes foraged crops in the nearby farmland in mid-winter,causing human-bird conflicts in the recent decade.Our results found that changes in habitat and food conditions on tideland impacted wintering Hooded Cranes.Foraging in farmland with human disturbance in the recent decade might be related to insufficient food on tideland.We suggest active intervention to accelerate the restoration of Sea Bulrush on tideland and reduce human disturbance in farmland to improve the habitat quality of the wintering Hooded Crane at Chongming Dongtan.
基金We acknowledge financial support from the National Key R&D Program of China(no.2022YFD2401002)the National Science Fund for Distinguished Young Scholars(no.32225049)+5 种基金the National Natural Science Foundation of China(no.U21A20264)the Special Foundation for Major Research Program of Fujian Province(no.2020NZ08003)the Major Special Funding for"Science and Technology Innovation 2025"in Ningbo(no.2021Z002)the Local Science and Technology Development Project Guide by The Central Government(no.2019L3032)the China Agriculture Research System(no.CARS-47)the Alliance of International Science Organizations(ANSO-CR-PP-2021-03).
文摘The large yellow croaker(Larimichthys crocea)is one of the most economically valuable marine fsh in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades.The stock division and species distribution,which have important implications for ecological protection,germplasm recovery,and fshery resource management,have been debated since the 1960s.However,it is still uncertain even how many stocks exist in this species.To address this,we evaluated the fne-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers.Compared with the widely accepted stock boundaries proposed in the 1960s,our results revealed that a climate-driven habitat change probably occurred between the Naozhou(Nanhai)Stock and the Ming-Yuedong(Mindong)Stock.The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait,accompanied by highly asymmetric introgression.In addition,we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas.The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes,whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations.These fndings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker,providing a basis for conservation,fsheries management and further evolutionary biology studies.
基金Chinese Academy of Sciences-The World Academy of Sciences(CAS-TWAS)President's Fellowship Program for PhD Study。
文摘Gandaki River Basin(GRB) is part of the central Himalayan region, which provides habitat for numerous wild species. However, due to changes in climate and land cover, the habitats of many protected species are at risk. Based on the maximum entropy(MaxEnt) model, coupled with bioclimatic layers, land cover and DEM data, the impacts of environmental factors on habitat suitability of Himalayan Monal(Lophophorus impejanus), a national bird of Nepal, was quantified. This study further assessed the present and future habitat and distribution of the Himalayan Monal in the context of climate and land cover changes. The results of this study show that the highly suitable habitat of Himalayan Monal presently occupies around 749 km^2 within the northern, eastern and western parts, particularly protected areas such as Langtang National Park, Manaslu Conservation Area and Annapurna Conservation Area, while it is likely to decrease to 561 km^2 by 2050, primarily in the northern and northwestern parts(i.e., Chhyo, Tatopani, Humde and Chame). These expected changes indicate increasing risk for Himalayan Monal due to a decline in its suitable habitat area.
基金supported by the National Natural Science Foundation of China (grant numbers 31970500 and 31770571)the Excellent Youth Project of the Anhui Natural Science Foundation (2108085Y09)the Biodiversity Investigation,Observation and Assessment Program (2019-2023) of Ministry of Ecology and Environment of China
文摘Conversion of natural environments to human-modified landscapes is continuing at an unprecedented rate,exerting fundamental influences on global biodiversity.Understanding how wildlife communities respond to landscape modifications is critical to improve biodiversity conservation in human-dominated landscapes.In this study,we surveyed bird communities in three common habitats(i.e.,farmland,village,and forest)in the southern Anhui Mountainous Area during summer(August 2019)and winter(December 2020).The diversity metrics and species compositions of the avian communities were compared among the habitats,and the effects of land use composition in these habitats were tested.During the field surveys,we recorded 7599 birds of 120 species along 45 line transects of 1km in length.The land use compositions differed among habitats,and land use diversity was the highest in villages and lowest in forests.The species richness and bird abundance in the two human-dominated habitats(i.e.,farmland and village)were higher than those in forest in both seasons.Bird species composition also differed across habitat types in both seasons.Bird species feeding on vertebrates,fish and carrion,and species feeding on plants and seeds were mainly found in habitats with less construction lands and lower land use diversity,while omnivorous species and species feeding on fruits and nectar or on invertebrates were less affected by these two variables.The indicator species analysis showed that most species associated with forest feed on invertebrates,while species feeding on plants and seeds were more correlated with farmland and village.The results indicated that the conversion of natural habitats to human-dominated landscapes has pronounced impacts on bird communities in the study area.Human-dominated habitats harboured more avian species that deserve conservation attention.Meanwhile,bird conservations should not be relaxed in forests because there were more than 20 species that had a high specificity for forests.
基金The Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0603)The Strategic Priority Research Program of Chinese Academy of Sciences(XDA20040201)The National Natural Science Foundation of China(41761144081)。
文摘Gandaki River Basin(GRB)is an important part of the central Himalayan region,which provides habitat for numerous wild species.However,climatic changes are making the habitat in this basin more vulnerable.This paper aims to assess the potential impacts of climate change on the spatial distributions of habitat changes for two vulnerable species,Himalayan black bear(Ursus thibetanus laniger)and common leopard(Panthera pardus fusca),using the maximum entropy(Max Ent)species distribution model.Species occurrence locations were used along with several bioclimatic and topographic variables(elevation,slope and aspect)to fit the model and predict the potential distributions(current and future)of the species.The results show that the highly suitable area of Himalayan black bear within the GRB currently encompasses around 1642 km^(2)(5.01%area of the basin),which is predicted to increase by 51 km^(2) in the future(2050).Similarly,the habitat of common leopard is estimated as 3999 km^(2)(12.19%of the GRB area),which is likely to increase to 4806 km^(2) in 2050.Spatially,the habitat of Himalayan black bear is predicted to increase in the eastern part(Baseri,Tatopani and north from Bhainse)and to decrease in the eastern(Somdang,Chhekampar),western(Burtibang and Bobang)and northern(Sangboche,Manang,Chhekampar)parts of the study area.Similarly,the habitat of common leopard is projected to decrease particularly in the eastern,western and southern parts of the basin,although it is estimated to be extended in the southeastern(Bhainse),western(Harichaur and northern Sandhikhark)and north-western(Sangboche)parts of the basin.To determine the habitat impact,the environmental variables such as elevation,Bio 15(precipitation seasonality)and Bio 16(precipitation of wettest quarter)highly contribute to habitat change of Himalayan black bear;while Bio 13(precipitation of wettest month)and Bio 15 are the main contributors for common leopard.Overall,this study predicted that the suitable habitat areas of both species are likely to be impacted by climate change at different altitudes in the future,and these are the areas that need more attention in order to protect these species.
基金Supported by the National Natural Science Foundation of China (30540039) and the Programme of Chengdu Institute of Mountain Hazards and Environment (Y105033),
文摘Peleoecologlcel evidence end peleoclimatlc records indicate that there wee e plant polewerd migration in latitude and an upward shift In elevation with increased temperatures after the last glaciation. Recent studies have shown that global warming over the past 100 years has been having a noticeable effect on living systems. Current global warming Is causing a poleward and upward shift In the range of many plants and animals. Climate change, In connection with other global changes, is threatening the survival of a wide range of plant and animal species. This raises the question: can existing reserves really preserve current levels of biological diversity In the long term given the present rapid pace of climate change? The present paper deals with this question In the context of the responses of plants and animals to global climate change, based on a literature review. Consequently, we recommend expanding reserves towards the poles and/or towards higher altitudes, to permit species to shift their ranges to keep pace with global warming.