期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermophysical properties of a novel high entropy hafnate ceramic 被引量:6
1
作者 Longkang Cong Shouyang zhang +1 位作者 Shengyue Gu Wei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期152-157,共6页
High-entropy oxides(HEOs)are considered promising thermal barrier coating(TBC)materials due to their unique thermophysical performances induced by the entropy effects.In this work,(La_(0.2)Ce_(0.2)Pr_(0.2)Sm_(0.2)Eu_(... High-entropy oxides(HEOs)are considered promising thermal barrier coating(TBC)materials due to their unique thermophysical performances induced by the entropy effects.In this work,(La_(0.2)Ce_(0.2)Pr_(0.2)Sm_(0.2)Eu_(0.2))_(2)Hf_(2)O_(7)high entropy hafnate,as a thermal barrier coating(TBC)material,was successfully synthesized by solution combustion method for the first time.From the X-ray diffraction,scanning electron microscopy,and transmission electron microscopy results,it is confirmed that(La_(0.2)Ce_(0.2)Pr_(0.2)Sm_(0.2)Eu_(0.2))_(2)Hf_(2)O_(7)has pure single-phase ordered pyrochlore structure with highly homogeneous composition at both micrometer and nanometer scales.The synthesized(La_(0.2)Ce_(0.2)Pr_(0.2)Sm_(0.2)Eu_(0.2))2 Hf2O7 possesses excellent phase stability at 1600℃and demonstrates a low thermal conductivity(1.0-1.24 W·m^(-1)·K^(-1))which is lower than those of rare earth hafnates(RE2Hf2O7,RE=La,Ce,Pr,Sm,Eu).Therefore,it provides a new perspective and potential to prompt the next generation TBC materials with better performance. 展开更多
关键词 High-entropy ceramic Rare-earth hafnate Thermal barrier coating Thermal conductivity
原文传递
High-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))_(2)Hf_(2)O_(7) ceramic with superb resistance to radiation-induced amorphization 被引量:3
2
作者 Jingxin Wu Meng Zhang +11 位作者 Zhanqiang Li Minzhong Huang Huiming Xiang Liyan Xue Zhengming Jiang Zhigang Zhao Lianfeng Wei Yong Zheng Fan Yang Guang Ran Yanchun Zhou Heng Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第24期1-9,共9页
Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)h... Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)high-entropy ceramic(HE-RE2 Hf_(2)O_(7))for control rod was prepared by solid-state reaction method.The ion irradiation of HE-RE_(2) Hf_(2)O_(7)with 400 keV Kr+at 400℃was investigated using a 400 kV ion implanter and compared with single-component pyrochlore Gd2 Hf_(2)O_(7)to evaluate the irradiation resistance.For HE-RE2 Hf_(2)O_(7),the phase transition from pyrochlore to defective fluorite is revealed after irradiation at 60 dpa.After irradiation at 120 dpa,it maintained crystalline,which is comparable to Gd2 Hf_(2)O_(7)but superior to the titanate pyrochlores previously studied.Moreover,the lattice expansion of HE-RE2 Hf_(2)O_(7)(_(0.2)2%)is much lower than that of Gd2 Hf_(2)O_(7)(0.62%),indicating excellent irradiation damage resistance.Nanoindentation tests displayed an irradiation-induced increase in hardness and a decrease in elastic modulus by about 2.6%.Irradiation-induced segregation of elements is observed on the surface of irradiated samples.In addition,HE-RE2 Hf_(2)O_(7)demonstrates a more sluggish grain growth rate than Gd2 Hf_(2)O_(7)at 1200℃,suggesting better high-temperature stability.The linear thermal expansion coefficient of HE-RE2 Hf_(2)O_(7)is 10.7×10-6 K-1 at 298–1273 K.In general,it provides a new strategy for the design of the next advanced nuclear engineering materials. 展开更多
关键词 High-entropy ceramic Rare earth hafnate Ion irradiation Amorphization resistance High temperature stability Nuclear safety
原文传递
Mechanical and thermal properties of RE4Hf3O12(RE=Ho,Er, Tm) ceramics with defect fluorite structure 被引量:6
3
作者 Wanpeng Hu Yiming Lei +1 位作者 Jie Zhang Jingyang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期2064-2069,共6页
The thermal and environmental barrier coatings (T/EBC) are technologically important for advanced propulsion engine system. In this study, RE4Hf3Oi2 (RE=Ho, Er, Tm) with defect fluorite structure was investigated for ... The thermal and environmental barrier coatings (T/EBC) are technologically important for advanced propulsion engine system. In this study, RE4Hf3Oi2 (RE=Ho, Er, Tm) with defect fluorite structure was investigated for potential use as top TBC layer. Dense pellets were fabricated via a hot pressing method and the mechanical and thermal properties were characterized. RE4Hf3Oi2 (RE=Ho, Er, Tm) possessed a high Vickers hardness of 11 GFa. The material retained high elastic modulus at elevated temperatures up to 1773 K, which made it attractive for high temperature application. The coefficient of thermal expansion (CTE) of RE4Hf3Oi2 (RE = Ho, Er, Tm) laid in the range between 7× 10^-6K^-1 to 10×10^16K^-1 from 473 K to 1673 K. In addition, the rare earth hafnates exhibited lower thermal conductivity which rendered it a good candidate material for thermal barrier applications. 展开更多
关键词 RARE earth hafnate Thermal/environmental BARRIER coating Mechanical PROPERTY THERMAL PROPERTY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部