期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Quantitative Evaluation of Sustainable Development and Eco-Environmental Carrying Capacity in Water-Deficient Regions:A Case Study in the Haihe River Basin,China 被引量:21
1
作者 WANG Zhong-gen LUO Yu-zhou +1 位作者 ZHANG Ming-hua XIA Jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期195-206,共12页
Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pum... Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pumping have caused serious environmental problems and limited economic development in many regions all around the world. In this paper, a framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity (EECC) as the core measure. As a case study, the developed approach was applied to data of the Haihe River Basin, China, during 1998 through 2007. The overall sustainable development degree (SDD) is determined to be 0.39, suggesting that this rate of development is not sustainable. Results of scenario analysis revealed that overshoot, or resource over- exploitation, of the Basin's EECC is about 20% for both population and economy. Based on conditions in the study area in 2007, in order to achieve sustainable development, i.e., SDD〉0.70 in this study, the EECC could support a population of 108 million and gross domestic product (GDP) of 2.72 trillion CNY. The newly developed approach in quantifying ecoenvironmental carrying capacity is anticipated to facilitate sustainable development oriented resource management in waterdeficient areas. 展开更多
关键词 eco-environmental carrying capacity development scenario haihe river basin sustainable development waterresources
下载PDF
Spatial and temporal variability of daily precipitation in Haihe River basin, 1958-2007 被引量:17
2
作者 CHU Jianting XIA Jun +2 位作者 XU Chongyu LI Lu WANG Zhonggen 《Journal of Geographical Sciences》 SCIE CSCD 2010年第2期248-260,共13页
The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid mo... The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid more and more attention. However, in China, the precipitation data are measured by weather stations (WS) of China Meteorological Administration and hydrological rain gauges (RG) of national and local hydrology bureau. The WS data usually have long record with fewer stations, while the RG data usually have short record with more stations. The consistency and correlation of these two data sets have not been well understood. In this paper, the precipitation data from 30 weather stations for 1958-2007 and 248 rain gauges for 1995-2004 in the Haihe River basin are examined and compared using linear regression, 5-year moving average, Mann-Kendall trend analysis, Kolmogorov-Smirnov test, Z test and F test methods. The results show that the annual precipitation from both WS and RG records are normally distributed with minor difference in the mean value and variance. It is statistically feasible to extend the precipitation of RG by WS data sets. Using the extended precipitation data, the detailed spatial distribution of the annual and seasonal precipitation amounts as well as their temporal trends are calculated and mapped. The various distribution maps produced in the study show that for the whole basin the precipitation of 1958-2007 has been decreasing except for spring season. The decline trend is significant in summer, and this trend is stronger after the 1980s. The annual and seasonal precipitation amounts and changing trends are different in different regions and seasons. The precipitation is decreasing from south to north, from coastal zone to inland area. 展开更多
关键词 climate change spatial and temporal variability of precipitation Mann-Kendall method Kolmogorov-Smirnov test Z test F test haihe river basin
下载PDF
Risk assessment of water security in Haihe River Basin during drought periods based on D-S evidence theory 被引量:6
3
作者 Qian-jin DONG Xia LIU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期119-132,共14页
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d... The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies. 展开更多
关键词 risk assessment water security drought periods entropy D-S evidence theory "evidential reasoning algorithm haihe river basin
下载PDF
Change of the solar radiation and its causes in the Haihe River Basin and surrounding areas 被引量:5
4
作者 LIU Changming LIU Xiaomang +1 位作者 ZHENG Hongxing ZENG Yan 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期569-580,共12页
Solar radiation is an important driving force for the formation and evolution of climate system. Analysis of change in solar radiation is helpful in understanding mechanism of climate change. In this study, the tempor... Solar radiation is an important driving force for the formation and evolution of climate system. Analysis of change in solar radiation is helpful in understanding mechanism of climate change. In this study, the temporal and spatial variations of solar radiation and the cause of the change in solar radiation have been analyzed based on meteorological data from 46 national meteorological stations and aerosol index data from TOMS over the Haihe River Basin and surrounding areas. The results have shown that solar radiation and direct radiation significantly decreased, while scattered radiation increased during the period 1957-2008. Spatially, the decreasing trend of solar radiation was more and more significant from low population density areas to high population density areas. The spatial distribution of increase in aerosol index is consistent with that of decrease in solar radiation. The increase in aerosols resulting from human activities was an important reason for the decrease in solar radiation. 展开更多
关键词 solar radiation TREND AEROSOL haihe river basin
下载PDF
Estimation and Characteristic Analysis of Biomass within the Haihe River Basin Based on CASA Model
5
作者 Chen Xueyang Wang Lan 《Meteorological and Environmental Research》 CAS 2015年第1期37-41,共5页
Using CASA model, biomass within the Haihe River basin during 2002 -2007 was estimated based on remote sensing images, corresponding data of temperature, precipitation and solar radiation, and 1:400 000 0 maps of veg... Using CASA model, biomass within the Haihe River basin during 2002 -2007 was estimated based on remote sensing images, corresponding data of temperature, precipitation and solar radiation, and 1:400 000 0 maps of vegetation coverage in China. Variations in the biomass with vegetation type and vegetation coverage in 2007 were analyzed. Meanwhile, its temporal and spatial changes were discussed. The results validate the applicability of CASA model in the estimation of biomass within the Haihe River basin. During the past 6 years, annual average biomass within the basin was 405.5 Tg in total; annual average biomass in the basin was high in the southeast but low in the northwest, namely plains 〉 mountains 〉 plateaus. 展开更多
关键词 BIOMASS CASA model The haihe river basin NPP China
下载PDF
Climate Simulation and Future Projection of Precipitation and the Water Vapor Budget in the Haihe River Basin 被引量:2
6
作者 李巧萍 丁一汇 《Acta meteorologica Sinica》 SCIE 2012年第3期345-361,共17页
The climatological characteristics of precipitation (HRB) are analyzed using daily observations at 740 and the water vapor budget in the Haihe River basin stations in China in 1951 2007 and the 4-time daily ERA40 re... The climatological characteristics of precipitation (HRB) are analyzed using daily observations at 740 and the water vapor budget in the Haihe River basin stations in China in 1951 2007 and the 4-time daily ERA40 reanalysis data in 1958 2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models' baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10% 18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive results, the HRB region is expected to get wetter throughout the 21st century. Based on these projection in the 21st century due to global warming. 展开更多
关键词 the haihe river basin PRECIPITATION water vapor budget simulation and projection
原文传递
Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin 被引量:2
7
作者 Jingling LIU Tao YANG +2 位作者 Qiuying CHEN Feng LIU Binbin WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第1期103-113,共11页
The distribution and characteristics of seven heavy metals in sediments located in the typical ecological units (eco-units) (e.g., rivers, lakes, and estuaries) of Haihe River Basin were analyzed. The Hakanson pot... The distribution and characteristics of seven heavy metals in sediments located in the typical ecological units (eco-units) (e.g., rivers, lakes, and estuaries) of Haihe River Basin were analyzed. The Hakanson potential ecological risk index was used for ecological risk assessment. The results indicated that the concentration scales of As, Hg, Cr, Cd, Pb, Cu, and Zn in the eco-units were 2.08 to 24.80 mg·g-1, 0.01 to 1135.50 mg·g-1, 28.70 to 152.73mg·g-1, 0.03 to 195765.83mg·g-1, 8.65 to 157.82mg·g-1, 6.47 to 178.61mg·g-1, and 21.09 to 1076.25 mg·g-1, respectively. The maximum concentra- tions of Hg, Cd, and Zn showed higher levels than other water bodies around the world. Hg and Cd have high concentrations in Zhangweinanhe River (1135.50 and 195765.83mg·g-1, respectively) and Haihe Estuary (790.50 and 548.47 mg·g-1, respectively). According to the ecological factor, Cd and Hg showed very strong ecological risks. The seven heavy metals, namely, Cd, Hg, As, Cr, Pb, Cu, and Zn, exhibited ecological risk levels in descending order. Based on the potential ecological risk index, Luanhe River and Baiyangdian Lake had moderate ecological risks, whereas every site in Zhangweinanhe River and Haihe Estuary had substantial risk levels. The risk order of the typical eco-units are as follows: Zhangweinan River (2278345.68) 〉 Estuary (161914.74) 〉 Luanhe River (191.54)〉Baiyangdian Lake (120.95). These results provided a scientific basis for water environment improve- ment and risk management of the Haihe River Basin. 展开更多
关键词 haihe river basin ecological risk eco-units heavy metals
原文传递
The Influence of Large-Scale Circulation on the Summer Hydrological Cycle in the Haihe River Basin of China 被引量:1
8
作者 OU Tinghai LIU Yanxiang +4 位作者 CHEN Deliang David RAYNER ZHANG Qiang GAO Ge XIANG Weiguo 《Acta meteorologica Sinica》 SCIE 2011年第4期517-526,共10页
In this study, we focus on changes in three important components of the hydrological-cycle in the Haihe River basin (HRB) during 1957-2005: precipitation (Prep), actual evaportranspiration (ETa), and pan evapor... In this study, we focus on changes in three important components of the hydrological-cycle in the Haihe River basin (HRB) during 1957-2005: precipitation (Prep), actual evaportranspiration (ETa), and pan evaporation (PE)-a measure of potential evaporation. The changes in these components have been evaluated in relation to changes in the East Asian summer monsoon. Summer Prep for the whole basin has decreased significantly during 1957-2005. Recent weakening of the convergence of the integrated water vapor flux, in combination with a change from cyclonic-like large-scale circulation conditions to anti-cyclonic-like conditions, led to the decrease in the summer Prep in the HRB. ETa is positively correlated with Prep on the interannual timescale. On longer timescales, however, ETa is less dependent on Prep or the large-scale circulation. We found negative trends in ETa when the ERA40 reanalysis data were used, but positive trends in ETa when the NCEP/NCAR reanalysis data were used. PE declined during the period 1957-2001. The declining of PE could be explained by a combination of declining solar radiation and declining surface wind. However, the declining solar radiation may itself be related to the weakening winds, due to weaker dispersion of pollution. If so, the downward trend of PE may be mainly caused by weakening winds. 展开更多
关键词 hydrological cycle RUNOFF Lamb-Jenkinson classification CIRCULATION haihe river basin (HRB)
原文传递
Remote sensing monitoring on regional crop water productivity in the Haihe River Basin 被引量:1
9
作者 LIFapeng ZHAN Chesheng +2 位作者 XU Zongxue JIANG Shanshan XIONG Jun 《Journal of Geographical Sciences》 SCIE CSCD 2013年第6期1080-1090,共11页
Crop water productivity (CWP) agricultural development in water scarcity is one of the important indicators for sustainable area. There is serious conflict between water sup- ply and requirement in the Haihe River B... Crop water productivity (CWP) agricultural development in water scarcity is one of the important indicators for sustainable area. There is serious conflict between water sup- ply and requirement in the Haihe River Basin. CWP of winter wheat and summer maize from 2003 to 2007 in the Haihe River Basin is estimated based on large-scale evapotranspiration (ET) and crop yield obtained by remote sensing technology. Spatial and temporal distribution of CWP of winter wheat and summer maize is investigated in this study. Results show that CWP of winter wheat in most parts of the study area varies from 1.02 kg/m3 to 1.53 kg/m3, and CWP of summer maize varies from 1.31 kg/m3 to 2.03 kg/m3. Multi-year averaged CWP of winter wheat and summer maize in the study area is about 1.19 kg/m3 and 1.59 kg/m3. CWP results show certain promotion potential to alleviate the water shortage in the Haihe River Basin. Correlation analysis of CWP, crop yield and ET shows that there is great potential for crop yield promotion without the growth in irrigation water. Large-scale CWP estimated by remote sensing technology in this study shows spatial distribution features, which could be used to real-time agricultural water resource management combined with crop yield and ET. 展开更多
关键词 crop water productivity remote sensing haihe river basin
原文传递
Effects of climate and land use changes on runoff,sediment,nitrogen and phosphorus losses in the Haihe River Basin
10
作者 Nan DING Yi CHEN Fulu TAO 《Frontiers of Earth Science》 SCIE CSCD 2022年第4期934-948,共15页
Investigating the impacts of climate and land use changes on the hydrological cycle and water environment at the basin scale is important for providing scientific evidence to manage the trade-offs and synergies among ... Investigating the impacts of climate and land use changes on the hydrological cycle and water environment at the basin scale is important for providing scientific evidence to manage the trade-offs and synergies among water resources,agricultural production and environmental protection.We used the Soil and Water Assessment Tool(SWAT)with various spatiotemporal data to quantify the contributions of climate and land use changes to runoff,sediment,nitrogen(N)and phosphorus(P)losses in the Haihe River Basin since the 1980s.The results showed that 1)climate and land use changes significantly increased evapotranspiration(ET),transport loss,sediment input and output,and organic N and P production,with ET,sediment input and organic N affected the most;2)runoff,sediment and ammonia N were most affected by climate and land use changes in the Daqing River Basin(217.3 mm),Nanyun River Basin(3917.3 tons)and Chaobai River Basin(87.6 kg/ha),respectively;3)the impacts of climate and land use changes showed explicit spatiotemporal patterns.In the Daqing,Yongding and Nanyun River Basins,the contribution of climate change to runoff and sediment kept increasing,reaching 88.6%-98.2%and 63%-77.2%,respectively.In the Ziya and Chaobai River Basins,the contribution of land use was larger,reaching 88.6%-92.8%and 59.8%-92.7%,respectively.In the Yongding,Chaobai,Ziya and Daqing River Basins,the contribution of land use to N and P losses showed an increasing trend over the past 40 years(maximum 89.7%).By contrast,in Nanyun and Luanhe River Basins,the contribution of climate change to N and P losses increased more(maximum 92.1%).Our evaluation of the impacts of climate and land use changes on runoff,sediment,and N and P losses will help to support the optimization of land and water resources in the Haihe River Basin. 展开更多
关键词 haihe river basin water and soil resources LUCC non-point pollution watershed management N leaching
原文传递
CHINA'S FOUR MAJOR METEOROLOGICAL SCIENTIFIC EXPERIMENTS
11
作者 马鹤年 汤绪 《Acta meteorologica Sinica》 SCIE 1999年第2期129-140,共12页
China lies in East-Asian monsoon region,which is one of the well-known active monsoon zones around the world.Monsoon anomaly results in frequent natural disasters,such as drought, torrential rain and flood.In 1998,joi... China lies in East-Asian monsoon region,which is one of the well-known active monsoon zones around the world.Monsoon anomaly results in frequent natural disasters,such as drought, torrential rain and flood.In 1998,joint intensified observations for 4 major meteorological scientific experiments have been carried out over Chinese major monsoon affected areas.A number of valuable data have been obtained and some observational facts have come out after initial analysis.The present paper is to give an introduction to the 4 major meteorological scientific experiments conducted in 1998 in China.including its origin and scientific goals,implementation and planning,equipment and progress,and initial findings from the important observational facts. It aims to provide a comprehensive report on the progress of the above experiments for those who are interested in. 展开更多
关键词 South China Sea monsoon Qinghai-Xizang(Tibetan)Plateau haihe river basin South China Area meteorological experiment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部