期刊文献+
共找到6,106篇文章
< 1 2 250 >
每页显示 20 50 100
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
1
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression 被引量:2
2
作者 Zhiguo Lu Wenjun Ju +1 位作者 Fuqiang Gao Taotao Du 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期42-60,共19页
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ... The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling. 展开更多
关键词 Post-peak behavior Synthetic rock mass coal bursts coal burst prevention
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China 被引量:2
3
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos Basin Carboniferous Benxi Formation risk exploration
下载PDF
Microstructural and thermal properties of coal measure sandstone subjected to high temperatures
4
作者 Weijing Xiao Dongming Zhang +1 位作者 Shujian Li Mingyang Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2909-2921,共13页
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t... To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires. 展开更多
关键词 rock mechanics coal measure sandstone MICROMORPHOLOGY thermal damage
下载PDF
Surrounding Rock Failure Mechanism and Control Technology of Gob-Side Entry with Triangle Coal Pillar at Island Longwall Panel in 15 m Extra-Thick Coal Seams
5
作者 Hao Sun 《World Journal of Engineering and Technology》 2024年第2期373-388,共16页
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri... Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face. 展开更多
关键词 Island coal Face Evolution Law of Surrounding rock Stress Field Strong Mine Pressure Hazardous Area
下载PDF
Study on the disaster caused by the linkage failure of the residual coal pillar and rock stratum during multiple coal seam mining:mechanism of progressive and dynamic failure
6
作者 Yunliang Tan Qing Ma +4 位作者 Xiaoli Liu Xuesheng Liu Derek Elsworth Ruipengg Qian Junlong Shang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期122-135,共14页
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig... Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines. 展开更多
关键词 Multi-seam mining Residual coal pillars rock stratum Linkage instability mechanism Local mine stiffness
下载PDF
Formation and distribution of coal measure source rocks in the Eocene Pinghu Formation in the Pinghu Slope of the Xihu Depression,East China Sea Shelf Basin
7
作者 Yongcai Yang Xiaojun Xie +3 位作者 Youchuan Li Gang Guo Xiaoying Xi Wenjing Ding 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期254-269,共16页
The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-g... The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration. 展开更多
关键词 coal measure source rocks natural gas LAGOON sedimentary organic facies terrigenous organic matter
下载PDF
Coal–rock interface detection on the basis of image texture features 被引量:20
8
作者 Sun Jiping Su Bo 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期681-687,共7页
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence... Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram. 展开更多
关键词 coalrock interface detection TEXTURE Gray level co-occurrence matrix Feature selection Fisher discriminant method Cross-validation
下载PDF
Stress distribution and surrounding rock control of mining near to the overlying coal pillar in the working face 被引量:8
9
作者 Rui Gao Bin Yu Xiangbin Meng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期881-887,共7页
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ... The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements. 展开更多
关键词 Overlying coal pillar(OCP) Stress distribution Influencing factors SURROUNDING rock control
下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:15
10
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
下载PDF
Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt(RCB)composite system 被引量:9
11
作者 Genshui Wu Weijian Yu +1 位作者 Jianping Zuo Shaohua Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期759-768,共10页
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur... For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early. 展开更多
关键词 Thin coal seam coal and rock roadway BOLT Tension-shear failure rock-coal-bolt”composite system
下载PDF
The study of acoustic emission (AE) forecasting coal and rock disaster technique 被引量:9
12
作者 ZOU Yin-hui 《Journal of Coal Science & Engineering(China)》 2009年第2期157-160,共4页
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ... Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted. 展开更多
关键词 acoustic emission coal and rock body propagation laws wave guide installation technique coal and rock dynamic disasters
下载PDF
Types of Organic Fades and Source Rock Assessment of the Coal-Measure Mudstone in the Turpan-Hami Basin 被引量:3
13
作者 ZHAO Changyi, DU Meili, SHAO Longyi, CHEN Jianping,CHENG Kerning and HE ZhonghuaResearch Institute of Petroleum Exploration and Development,China National Petroleum Corporation, 20 Xueyuan Rd., Beijing 100083Beijing Graduate School of China University of Mining and Technology,11 Xueyuan Rd., Beijing 100083 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第2期169-179,共11页
This paper discusses the enviromental characteristics of carbonaceous mudstone and mudstone (coal-measure mudstone in short) of the Early and Middle Jurassic in the Turpan-Hami basin, which were formed in swamps. Thro... This paper discusses the enviromental characteristics of carbonaceous mudstone and mudstone (coal-measure mudstone in short) of the Early and Middle Jurassic in the Turpan-Hami basin, which were formed in swamps. Through the organic facies study of the coal-measure mudstone in this area, the authors clarify that the flowing-water swamp is the most advanced organic facies belt. Furthermore, according to the practical materials of coal-measure mudstone in the area and with the evaluation criteria of lacustrine mudstone in the past, the authors have established the integrated symbol systems from the abundance of organic matter and the type of organic matter, which can be used in the source rock evaluation of the coal-measure mudstone. 展开更多
关键词 hydrocarbon from coal coal-measure mudstone organic facies source rock assessment Turpan-Hami basin
下载PDF
A state‑of‑the‑art review on rock seepage mechanism of water inrush disaster in coal mines 被引量:5
14
作者 Dan Ma Hongyu Duan +1 位作者 Jixiong Zhang Haibo Bai 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期1-28,共28页
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush... Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review. 展开更多
关键词 rock seepage mechanism Water inrush coal mine Stress-seepage coupling Flow regime transformation rock erosion
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
15
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines 被引量:4
16
作者 KABIESZ Józef MAKóWKA Janusz 《Mining Science and Technology》 EI CAS 2009年第5期660-667,共8页
Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulti... Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years’ mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 展开更多
关键词 coal mine rock bursts control case studies
下载PDF
Research on space-time coupling action laws of anchor-cable strengthening supporting for rock roadway in deep coal mine 被引量:5
17
作者 CHANG Ju-cai XIE Guang-xiang 《Journal of Coal Science & Engineering(China)》 2012年第2期113-117,共5页
In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose cro... In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time. 展开更多
关键词 space-time coupling relationship anchor-cable supporting deep coal mine rock roadway
下载PDF
Application of wavelet packet decomposition and its energy spectrum on the coal-rock interface identification 被引量:3
18
作者 任芳 杨兆建 +1 位作者 熊诗波 梁义维 《Journal of Coal Science & Engineering(China)》 2003年第1期109-112,共4页
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c... The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method. 展开更多
关键词 coal rock interface identification (CII) wavelet packet energy spectrum
下载PDF
Study of the features of outburst caused by rock cross-cut coal uncovering and the law of gas dilatation energy release 被引量:6
19
作者 Yu Baohai Su Chengxiang Wang Deming 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期453-458,共6页
To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ... To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst. 展开更多
关键词 rock cross-cut coal uncovering Gas dilatation energy Numerical calculation coal and gas outburst
下载PDF
Effects of caving–mining ratio on the coal and waste rocks gangue flows and the amount of cyclically caved coal in fully mechanized mining of super-thick coal seams 被引量:7
20
作者 Zhang Ningbo Liu Changyou Pei Mengsong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期145-150,共6页
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,... Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions. 展开更多
关键词 Caving-mining ratiocoal and waste rocks flowsAmount of cyclically caved coalZone of loose coal and waste rocks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部