A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.