Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ...Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.展开更多
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres...Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.展开更多
As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly ...As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.展开更多
Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution...Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution relating to approach velocity is introduced to denote the losses of translational kinetic energy. A parameter β involved in internal energy losses has been obtained to calculate the coefficient of restitution. As a result, the internal energy losses caused by elastic stress waves and the contact duration in metals can be calculated numerically for the collision between circular cylinder and half plane. The metals include aluminum alloys, steel-mild 1020, steel-stainless austenitic 304, tungsten alloys, copper alloys, nickel alloys and titanium alloys. By introducing a coefficient of velocity-frequency, an exponential aggression equation related the normalized oscillating frequency and normalized approach velocity has been obtained by the numerical method.展开更多
Taking into account both gain/loss and time-dependent atomic scattering length, this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive par...Taking into account both gain/loss and time-dependent atomic scattering length, this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive parabolic potential. Due to the balance of the scattering length and gain/loss, the bright solitary wave is shown to have constant amplitude. Especially, it is found that the bright solitary wave is accelerated by expulsive force, whose velocity can be modulated by changing the axial and transverse angular frequencies. The results are in good agreement with the experimental observations by Khaykovich et al (2002 Science 296 1290).展开更多
Vasospastic angina is caused by sudden occlusive vasoconstriction of a segment of an epicardial artery, which can present with a wide spectrum of clinical scenario. We report the cases of two patients diagnosed with v...Vasospastic angina is caused by sudden occlusive vasoconstriction of a segment of an epicardial artery, which can present with a wide spectrum of clinical scenario. We report the cases of two patients diagnosed with vasospastic angina, with one of which presenting with sudden cardiac arrest, while the other presenting with a relatively benign syncope. But both of them have J waves formation on ECG during active ischemia. The diagnosis and management of vasospastic angina, as well as the proposed clinical significance of J waves during coro- nary soasm are discussed.展开更多
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model i...Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.展开更多
This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading ang...This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading angles have been further developed.A correction factor is proposed to consider the nonlinear effect due to large waves in power estimation.The formulas are developed and verified by model tests of 5 ships in regular waves with various heading angles.The full-scale measurements from three different types of ships,i.e.,a PCTC,a container ship,and a chemical tanker,are used to validate the proposed model for speed loss prediction in irregular waves.The effect of the improved model for speed loss prediction on a ship’s voyage optimization is also investigated.The results indicate that a ship’s voyage optimization solutions can be significantly affected by the prediction accuracy of speed loss caused by waves.展开更多
The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and re...The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and realizing in-depth comprehension of dielectric loss mechanisms remain challenges.Herein,ultrafine oxygen vacancy-rich Nb_(2)O_(5)semiconductors are confined in carbon nanosheets(ov-Nb_(2)O_(5)/CNS)to boost dielectric polarization and achieve high attenuation.The polarization relaxation,electromagnetic response,and impedance matching of the ov-Nb_(2)O_(5)/CNS are significantly facilitated by the Nb_(2)O_(5)semiconductors with rich oxygen vacancies,which consequently realizes an extremely high attenuation performance of-80.8 dB(>99.999999%wave absorption)at 2.76 mm.As a dielectric polarization center,abundant Nb_(2)O_(5)–carbon heterointerfaces can intensify interfacial polarization loss to strengthen dielectric polarization,and the presence of oxygen vacancies endows Nb_(2)O_(5)semiconductors with abundant charge separation sites to reinforce electric dipole polarization.Moreover,the three-dimensional reconstruction of the absorber using microcomputer tomography technology provides insight into the intensification of the unique lamellar morphology regarding multiple reflection and scattering dissipation characteristics.Additionally,ov-Nb_(2)O_(5)/CNS demonstrates excellent application potential by curing into a microwave-absorbing,machinable,and heat-dissipating plate.This work provides insight into the dielectric polarization loss mechanisms of nano-semiconductor/carbon composites and inspires the design of high-performance microwave absorption materials.展开更多
The multiple patterns of internal solitary wave interactions(ISWI)are a complex oceanic phenomenon.Satellite remote sensing techniques indirectly detect these ISWI,but do not provide information on their detailed stru...The multiple patterns of internal solitary wave interactions(ISWI)are a complex oceanic phenomenon.Satellite remote sensing techniques indirectly detect these ISWI,but do not provide information on their detailed structure and dynamics.Recently,the authors considered a three-layer fluid with shear flow and developed a(2+1)Kadomtsev-Petviashvili(KP)model that is capable of describing five types of oceanic ISWI,including O-type,P-type,TO-type,TP-type,and Y-shaped.Deep learning models,particularly physics-informed neural networks(PINN),are widely used in the field of fluids and internal solitary waves.However,the authors find that the amplitude of internal solitary waves is much smaller than the wavelength and the ISWI occur at relatively large spatial scales,and these characteristics lead to an imbalance in the loss function of the PINN model.To solve this problem,the authors introduce two weighted loss function methods,the fixed weighing and the adaptive weighting methods,to improve the PINN model.This successfully simulated the detailed structure and dynamics of ISWI,with simulation results corresponding to the satellite images.In particular,the adaptive weighting method can automatically update the weights of different terms in the loss function and outperforms the fixed weighting method in terms of generalization ability.展开更多
听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究...听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。展开更多
基金the National Natural Science Foundation of China(Nos.52102036 and52301192)the Sichuan Science and Technology Program,China(No.2021JDRC0099)+3 种基金Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.)。
文摘Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金supported by the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)this work was supported in part by the National Key Research Program of China under Grant 2021YFA1200600,and Shanghai Sailing Program(22YF1447800).
文摘Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
基金supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project.
文摘As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.
文摘Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution relating to approach velocity is introduced to denote the losses of translational kinetic energy. A parameter β involved in internal energy losses has been obtained to calculate the coefficient of restitution. As a result, the internal energy losses caused by elastic stress waves and the contact duration in metals can be calculated numerically for the collision between circular cylinder and half plane. The metals include aluminum alloys, steel-mild 1020, steel-stainless austenitic 304, tungsten alloys, copper alloys, nickel alloys and titanium alloys. By introducing a coefficient of velocity-frequency, an exponential aggression equation related the normalized oscillating frequency and normalized approach velocity has been obtained by the numerical method.
基金supported by the National Natural Science Foundation of China(Grant Nos 10674070 and 10674113)the Program for New Century Excellent Talents in University of China(NCET-06-0707)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No 200726)the Natural Science Foundation of Hunan Province of China(Grant No 006JJ50006)the Program for Changjiang Scholars and Innovative Team in University of China(Grant No IRT0534)
文摘Taking into account both gain/loss and time-dependent atomic scattering length, this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive parabolic potential. Due to the balance of the scattering length and gain/loss, the bright solitary wave is shown to have constant amplitude. Especially, it is found that the bright solitary wave is accelerated by expulsive force, whose velocity can be modulated by changing the axial and transverse angular frequencies. The results are in good agreement with the experimental observations by Khaykovich et al (2002 Science 296 1290).
基金grants from the National Nat-ural Science Foundation of China,the PhD Programs Foundation of Ministry of Education of China (20120001120131). The authors of this article do not have potential conflicts of interest
文摘Vasospastic angina is caused by sudden occlusive vasoconstriction of a segment of an epicardial artery, which can present with a wide spectrum of clinical scenario. We report the cases of two patients diagnosed with vasospastic angina, with one of which presenting with sudden cardiac arrest, while the other presenting with a relatively benign syncope. But both of them have J waves formation on ECG during active ischemia. The diagnosis and management of vasospastic angina, as well as the proposed clinical significance of J waves during coro- nary soasm are discussed.
基金Supported by the National Science Fund for Distinguished Young Scholars (No 40425015)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos KZCX1-YW-12 and KZCX2-YW-201)
文摘Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.
基金Open access funding provided by Chalmers University of Technology.The authors acknowledge the financial support from the European Commission(Horizon 2020)project EcoSail(Grant Number 820593)We are also grateful to the support from the Swedish Foundation for International Cooperation in Research and Higher Education(CH2016-6673)+1 种基金National Natural Science Foundation of China(NSFC-51779202)The second author thanks the funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie(Grant Number 754412)and VGR MoRE2020.
文摘This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading angles have been further developed.A correction factor is proposed to consider the nonlinear effect due to large waves in power estimation.The formulas are developed and verified by model tests of 5 ships in regular waves with various heading angles.The full-scale measurements from three different types of ships,i.e.,a PCTC,a container ship,and a chemical tanker,are used to validate the proposed model for speed loss prediction in irregular waves.The effect of the improved model for speed loss prediction on a ship’s voyage optimization is also investigated.The results indicate that a ship’s voyage optimization solutions can be significantly affected by the prediction accuracy of speed loss caused by waves.
基金supported by National Natural Science Foundation of China(No.22078100,No.52102098,and No.22008073)Fundamental Research Funds for the Central Universities(No.222201718002)。
文摘The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and realizing in-depth comprehension of dielectric loss mechanisms remain challenges.Herein,ultrafine oxygen vacancy-rich Nb_(2)O_(5)semiconductors are confined in carbon nanosheets(ov-Nb_(2)O_(5)/CNS)to boost dielectric polarization and achieve high attenuation.The polarization relaxation,electromagnetic response,and impedance matching of the ov-Nb_(2)O_(5)/CNS are significantly facilitated by the Nb_(2)O_(5)semiconductors with rich oxygen vacancies,which consequently realizes an extremely high attenuation performance of-80.8 dB(>99.999999%wave absorption)at 2.76 mm.As a dielectric polarization center,abundant Nb_(2)O_(5)–carbon heterointerfaces can intensify interfacial polarization loss to strengthen dielectric polarization,and the presence of oxygen vacancies endows Nb_(2)O_(5)semiconductors with abundant charge separation sites to reinforce electric dipole polarization.Moreover,the three-dimensional reconstruction of the absorber using microcomputer tomography technology provides insight into the intensification of the unique lamellar morphology regarding multiple reflection and scattering dissipation characteristics.Additionally,ov-Nb_(2)O_(5)/CNS demonstrates excellent application potential by curing into a microwave-absorbing,machinable,and heat-dissipating plate.This work provides insight into the dielectric polarization loss mechanisms of nano-semiconductor/carbon composites and inspires the design of high-performance microwave absorption materials.
基金supported by the National Natural Science Foundation of China under Grant Nos.12275085,12235007,and 12175069Science and Technology Commission of Shanghai Municipality under Grant Nos.21JC1402500 and 22DZ2229014.
文摘The multiple patterns of internal solitary wave interactions(ISWI)are a complex oceanic phenomenon.Satellite remote sensing techniques indirectly detect these ISWI,but do not provide information on their detailed structure and dynamics.Recently,the authors considered a three-layer fluid with shear flow and developed a(2+1)Kadomtsev-Petviashvili(KP)model that is capable of describing five types of oceanic ISWI,including O-type,P-type,TO-type,TP-type,and Y-shaped.Deep learning models,particularly physics-informed neural networks(PINN),are widely used in the field of fluids and internal solitary waves.However,the authors find that the amplitude of internal solitary waves is much smaller than the wavelength and the ISWI occur at relatively large spatial scales,and these characteristics lead to an imbalance in the loss function of the PINN model.To solve this problem,the authors introduce two weighted loss function methods,the fixed weighing and the adaptive weighting methods,to improve the PINN model.This successfully simulated the detailed structure and dynamics of ISWI,with simulation results corresponding to the satellite images.In particular,the adaptive weighting method can automatically update the weights of different terms in the loss function and outperforms the fixed weighting method in terms of generalization ability.
文摘听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。