This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac...Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this...Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.展开更多
Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum ...Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.展开更多
We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growt...We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.展开更多
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo...Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.展开更多
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ...Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.展开更多
We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the m...We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo...Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and susta...The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.展开更多
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.展开更多
Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM ope...Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.展开更多
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr...In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).展开更多
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop...Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.展开更多
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au...Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by the National Natural Science Foundation of China(U1930117,12204445)。
文摘Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
基金supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)。
文摘Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303400)the National Key R&D Program of China(Grant No.2022YFB3605602)+2 种基金the Key R&D Program of Jiangsu Province(Grant Nos.BE2020004-3 and BE2021026)the National Naturaal Science Foundation of China(Grant No.61974065)Jiangsu Special Professorship,Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics.
文摘We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.
基金supported by the Beijing Natural Science Foundation (L202003)National Natural Science Foundation of China (No. 31700479)。
文摘Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404500)the National Natural Science Foundation of China(Grant Nos.T2222024 and 12034005)the STCSM Science and Technology Innovation Plan of Shanghai Science and Technology Commission(Grant Nos.20ZR1404200 and 21JC1400300)。
文摘Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.
基金Project supported by Beijing Natural Science Foundation(Grant No.1212014)the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)+4 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central UniversitiesYouth Innovation Promotion Association CAS。
文摘We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金financial support from the National Natural Science Foundation of China(Nos.62104017 and 52072204)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
文摘The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.
基金supported in part by The Science and Technology Development Fund, Macao SAR, China (0108/2020/A3)in part by The Science and Technology Development Fund, Macao SAR, China (0005/2021/ITP)the Deanship of Scientific Research at Taif University for funding this work。
文摘With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
基金supported by National Natural Science Foundation of China (No. 61971149, 62071504, 62271208)in part by the Special Projects in Key Fields for General Universities of Guangdong Province (No. 2020ZDZX3025, 2021ZDZX056)+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011657)in part by the Featured Innovation Projects of Guangdong Province of China (No. 2021KTSCX049)。
文摘Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.
文摘In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).
基金the financial support of Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515010940)Shenzhen Natural Science Fund (the Stable Support Plan Program No. 20220809160022001)the Shenzhen Science and Technology Programs (No. ZDSYS20220527171401003, KQTD20190929173914967)。
文摘Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.
基金National Natural Science Foundation of China,Grant/Award Numbers:52102260,52171211,51972220,61903235,U22A20145Shandong Provincial Natural Science Foundation,Grant/Award Numbers:ZR2020QB069,ZR2022ME051+4 种基金National Key Research and Development Program of China,Grant/Award Number:2022YFB4002004Scientific and Technological Innovation Ability Improvement Project of Minor Enterprises in Shandong Province,Grant/Award Number:2022TSGC1021Announce the List and Take Charge Project in Jinan,Grant/Award Number:202214012Major innovation project for integrating science,education and industry of Qilu University of Technology (Shandong Academy of Sciences),Grant/Award Numbers:2022JBZ01-07,2022PY044China Postdoctoral Science Foundation,Grant/Award Number:2022M711545。
文摘Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.