The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stres...The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.展开更多
Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors.While data-driven methods for assessing landslide susceptibili...Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors.While data-driven methods for assessing landslide susceptibility or for establishing rainfall-triggering thresholds are prevalent,integrating spatiotemporal information for dynamic large-area landslide prediction remains a challenge.The main aim of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale and explicitly counteracts potential errors in the available landslide data.Unlike previous studies focusing on space–time landslide modelling,it places a strong emphasis on reducing the propagation of landslide data errors into the modelling results,while ensuring interpretable outcomes.It introduces also other noteworthy innovations,such as visualizing the final predictions as dynamic spatial thresholds linked to true positive rates and false alarm rates and by using animations for highlighting its application potential for hindcasting and scenario-building.The initial step involves the creation of a spatio-temporally representative sample of landslide presence and absence observations for the study area of South Tyrol,Italy(7400 km2)within well-investigated terrain.Model setup entails integrating landslide controls that operate on various temporal scales through a binomial Generalized Additive Mixed Model.Model relationships are then interpreted based on variable importance and partial effect plots,while predictive performance is evaluated through various crossvalidation techniques.Optimal and user-defined probability cutpoints are used to establish quantitative thresholds that reflect both,the true positive rate(correctly predicted landslides)and the false positive rate(precipitation periods misclassified as landslide-inducing conditions).The resulting dynamic maps directly visualize landslide threshold exceedance.The model demonstrates high predictive performance while revealing geomorphologically plausible prediction patterns largely consistent with current process knowledge.Notably,the model also shows that generally drier hillslopes exhibit a greater sensitivity to certain precipitation events than regions adapted to wetter conditions.The practical applicability of the approach is demonstrated in a hindcasting and scenario-building context.In the currently evolving field of space–time landslide modelling,we recommend focusing on data error handling,model interpretability,and geomorphic plausibility,rather than allocating excessive resources to algorithm and case study comparisons.展开更多
This paper proposes a new proactive weighted threshold signature scheme based on Iflene's general secret sharing, the generalized Chinese remainder theorem, and the RSA threshold signature, which is itself based on t...This paper proposes a new proactive weighted threshold signature scheme based on Iflene's general secret sharing, the generalized Chinese remainder theorem, and the RSA threshold signature, which is itself based on the Chinese reminder theorem. In our scheme, group members are divided into different subgroups, and a positive weight is associated to each subgroup, where all members of the same subgroup have the same weight. The group signature can be generated if and only if the sum of the weights of members involved is greater than or equal to a fixed threshold value. Meanwhile, the private key of the group members and the public key of the group can be updated periodically by performing a simple operation aimed at refreshing the group signature message. This periodical refreshed individual signature message can enhance the security of the proposed weighted threshold signature scheme.展开更多
针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈...针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52304099,52172625)Shenzhen Science and Technology Program(Grant No.RCYX20221008092903013).
文摘The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.
基金The research leading to these results is related to the PROSLIDE project that received funding from the research program Research Südtirol/Alto Adige 2019 of the Autonomous Province of Bozen/Bolzano-Südtirol/Alto Adige.
文摘Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors.While data-driven methods for assessing landslide susceptibility or for establishing rainfall-triggering thresholds are prevalent,integrating spatiotemporal information for dynamic large-area landslide prediction remains a challenge.The main aim of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale and explicitly counteracts potential errors in the available landslide data.Unlike previous studies focusing on space–time landslide modelling,it places a strong emphasis on reducing the propagation of landslide data errors into the modelling results,while ensuring interpretable outcomes.It introduces also other noteworthy innovations,such as visualizing the final predictions as dynamic spatial thresholds linked to true positive rates and false alarm rates and by using animations for highlighting its application potential for hindcasting and scenario-building.The initial step involves the creation of a spatio-temporally representative sample of landslide presence and absence observations for the study area of South Tyrol,Italy(7400 km2)within well-investigated terrain.Model setup entails integrating landslide controls that operate on various temporal scales through a binomial Generalized Additive Mixed Model.Model relationships are then interpreted based on variable importance and partial effect plots,while predictive performance is evaluated through various crossvalidation techniques.Optimal and user-defined probability cutpoints are used to establish quantitative thresholds that reflect both,the true positive rate(correctly predicted landslides)and the false positive rate(precipitation periods misclassified as landslide-inducing conditions).The resulting dynamic maps directly visualize landslide threshold exceedance.The model demonstrates high predictive performance while revealing geomorphologically plausible prediction patterns largely consistent with current process knowledge.Notably,the model also shows that generally drier hillslopes exhibit a greater sensitivity to certain precipitation events than regions adapted to wetter conditions.The practical applicability of the approach is demonstrated in a hindcasting and scenario-building context.In the currently evolving field of space–time landslide modelling,we recommend focusing on data error handling,model interpretability,and geomorphic plausibility,rather than allocating excessive resources to algorithm and case study comparisons.
基金supported by the National Natural Science Foundation of China under Grant No. 61103233
文摘This paper proposes a new proactive weighted threshold signature scheme based on Iflene's general secret sharing, the generalized Chinese remainder theorem, and the RSA threshold signature, which is itself based on the Chinese reminder theorem. In our scheme, group members are divided into different subgroups, and a positive weight is associated to each subgroup, where all members of the same subgroup have the same weight. The group signature can be generated if and only if the sum of the weights of members involved is greater than or equal to a fixed threshold value. Meanwhile, the private key of the group members and the public key of the group can be updated periodically by performing a simple operation aimed at refreshing the group signature message. This periodical refreshed individual signature message can enhance the security of the proposed weighted threshold signature scheme.
文摘针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。