The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromag...The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120°to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density–density interaction, the number of halfskyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density–density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301500)the National Natural Science Foundation of China(Grant Nos.61835013 and 11971067)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB01020300 and XDB21030300)the Beijing Natural Science Foundation,China(Grant No.1182009)the Beijing Great Wall Talents Cultivation Program(Grant No.CIT&TCD20180325).
文摘The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120°to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density–density interaction, the number of halfskyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density–density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.