针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),...针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),引入增强调整因子,调整不同亮度值的增强程度来避免噪声放大及色彩失真现象;然后在RGB空间,通过分析光晕产生的原因,提出一种改进的高斯滤波器来消除光晕现象,并在计算反射分量时,通过参数调整图像颜色的保真度.最后,对上述两种不同颜色空间的处理结果进行加权平均作为算法的最终输出.实验结果表明,针对不同光照条件下的图像,1)该算法可以明显地改善光晕伪影现象;2)无色彩失真、噪声放大等问题;3)效果和效率优于带色彩恢复的多尺度Retinex算法(Multi-scale retinex with color restoration,MSRCR)及其他对比算法.展开更多
文摘针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),引入增强调整因子,调整不同亮度值的增强程度来避免噪声放大及色彩失真现象;然后在RGB空间,通过分析光晕产生的原因,提出一种改进的高斯滤波器来消除光晕现象,并在计算反射分量时,通过参数调整图像颜色的保真度.最后,对上述两种不同颜色空间的处理结果进行加权平均作为算法的最终输出.实验结果表明,针对不同光照条件下的图像,1)该算法可以明显地改善光晕伪影现象;2)无色彩失真、噪声放大等问题;3)效果和效率优于带色彩恢复的多尺度Retinex算法(Multi-scale retinex with color restoration,MSRCR)及其他对比算法.