期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
A study of the effective Hamiltonian method for decay dynamics 被引量:2
1
作者 陈静 单馨雨 +1 位作者 王小云 黄勇刚 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第3期29-37,共9页
The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electroma... The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes. 展开更多
关键词 decay dynamics resolvent operator technique effective hamiltonian method pseudomode
原文传递
An efficient broadband coupled-mode model using the Hamiltonian method for modal solutions
2
作者 XueFeng Yang WenYu Luo +1 位作者 HaoZhong Wang ChangQing Hu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第9期37-46,共10页
A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding bro... A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy. 展开更多
关键词 broadband modeling Fourier synthesis coupled modes hamiltonian method range-dependent waveguide
原文传递
Adaptive H-infinity control of synchronous generators with steam valve via Hamiltonian function method 被引量:2
3
作者 Shujuan LI Yuzhen WANG 《控制理论与应用(英文版)》 EI 2006年第2期105-110,共6页
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha... Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective. 展开更多
关键词 Synchronous generator Excitation control Steam valve control hamiltonian function method Adaptive H-infinity controller.
下载PDF
A method to calculate effective Hamiltonians in quantum information
4
作者 Jun-Hang Ren Ming-Yong Ye Xiu-Min Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期114-119,共6页
Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a rela... Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a relation between the effective Hamiltonian in the Shr?dinger picture and the corresponding effective Hamiltonian in the interaction picture.Finally, we present a relation between our effective Hamiltonian method and the James–Jerke method which is currently used by many authors to calculate effective Hamiltonians in quantum information science. 展开更多
关键词 EFFECTIVE hamiltonian method QUANTUM INFORMATION
下载PDF
Treatment of Dirac Fields in Light—Front Coordinates by Dirac‘s Method for Constrained Hamiltonian Systems
5
作者 YANGZe-Sen LIUPeng 等 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第1期55-58,共4页
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
关键词 Dirac fields in light-front coordinates Dirac's method for constrained hamiltonian systems
下载PDF
Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system 被引量:2
6
作者 胡妹芳 陈传淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期747-760,共14页
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ... The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results. 展开更多
关键词 hamiltonian system energy conservation SYMPLECTICITY finite elementmethod Runge-Kutta method
下载PDF
Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method
7
作者 Long Xiong Wei-Feng Zhuang Ming Gong 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第7期36-40,共5页
Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective H... Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices. 展开更多
关键词 Dynamics of Quantum State and Effective hamiltonian with Vector Differential Form of Motion method hamiltonian VECTOR QUANTUM
下载PDF
An Analytical Method for Predicting Chaos in Perturbed Planar Non-Hamiltonian System
8
作者 陈立群 《Journal of Shanghai University(English Edition)》 CAS 2002年第2期111-114,共4页
An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, ... An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters. 展开更多
关键词 analytical method CHAOS non hamiltonian integrable system generalized Melnikov function.
下载PDF
Continuous finite element methods for Hamiltonian systems
9
作者 汤琼 陈传淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第8期1071-1080,共10页
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved hav... By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory. 展开更多
关键词 hamiltonian systems continuous finite element methods pseudo-symplectic energy conservation
下载PDF
Projected Runge-Kutta methods for constrained Hamiltonian systems 被引量:4
10
作者 Yi WEI Zichen DENG +1 位作者 Qingjun LI Bo WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1077-1094,共18页
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi... Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature. 展开更多
关键词 projected Runge-Kutta (R-K) method differential-algebraic equation(DAE) constrained hamiltonian system energy and constraint preservation constraint violation
下载PDF
计算最优控制辛数值方法
11
作者 彭海军 王磊 +2 位作者 王昕炜 吴志刚 易雪玲 《计算力学学报》 CAS CSCD 北大核心 2024年第1期47-57,共11页
针对最优控制问题(OCP)的辛数值方法研究及应用进行综述。主要涉及内容包括,动力学系统为常微分方程描述的一般无约束、含不等式约束和状态时滞的最优控制问题,微分代数方程描述的一般无约束、含不等式约束和含切换系统的最优控制问题,... 针对最优控制问题(OCP)的辛数值方法研究及应用进行综述。主要涉及内容包括,动力学系统为常微分方程描述的一般无约束、含不等式约束和状态时滞的最优控制问题,微分代数方程描述的一般无约束、含不等式约束和含切换系统的最优控制问题,以及闭环最优控制问题。从间接法和直接法两个求解框架出发,重点介绍本课题组在保辛算法方面的研究工作。在间接法框架下,首先基于生成函数和变分原理,将OCP保辛离散为非线性方程组,再数值求解方程组。在直接法框架下,将OCP保辛离散为有限维的非线性规划问题(NLP),再数值求解。针对闭环最优控制问题,提出了保辛模型预测控制、滚动时域估计和瞬时最优控制算法。研究表明,保辛算法具有高精度和高效率的特点,在航空航天和机器人等领域有着广泛应用前景和价值。 展开更多
关键词 非线性最优控制 哈密顿系统 保辛方法 常微分方程 微分代数方程
下载PDF
部分弹性地基Mindlin板自由振动的Hamilton方法
12
作者 卜中月 侯国林 《内蒙古师范大学学报(自然科学版)》 CAS 2024年第6期644-652,共9页
采用Hamilton方法研究Pasternak型部分弹性地基上Mindlin板自由振动问题。引入合适的状态向量,将Mindlin板的控制微分方程转化为相应的Hamilton形式,进一步求解Hamilton算子的本征值和本征函数系,并给出具体的数值算例,数值模拟了部分... 采用Hamilton方法研究Pasternak型部分弹性地基上Mindlin板自由振动问题。引入合适的状态向量,将Mindlin板的控制微分方程转化为相应的Hamilton形式,进一步求解Hamilton算子的本征值和本征函数系,并给出具体的数值算例,数值模拟了部分弹性地基上板的固有频率。 展开更多
关键词 中厚板 部分弹性地基 Hamilton方法 自由振动
下载PDF
用Velocity Verlet积分器改进HMC抽样方法
13
作者 李婉荧 唐亚勇 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期25-34,共10页
Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IH... Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IHMC(Improved HMC)方法,该方法用Velocity Verlet积分器替代Leapfrog积分器,每次迭代时都计算两变量在同一时刻的值.为验证方法的效果,本文进行了两个实验,一个是将该方法应用于非对称随机波动率模型(RASV模型)的参数估计,另一个是将方法应用于方差伽马分布的抽样,结果显示:IHMC方法比HMC方法的效率更高、结果更稳定. 展开更多
关键词 HMC方法 Velocity Verlet积分器 RASV模型 方差伽马分布
下载PDF
一类矩形中厚板模型屈曲与振动问题的辛解析解
14
作者 吴美慧 侯国林 《内蒙古大学学报(自然科学版)》 CAS 2024年第5期483-495,共13页
从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解。首先,通过适当的变换将该模型转化为Hamilton系统,得到了Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6... 从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解。首先,通过适当的变换将该模型转化为Hamilton系统,得到了Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6种不同边界条件下的Mindlin板和Pasternak型双参数弹性地基的矩形中厚板的振动及屈曲问题进行了数值模拟。数据对比显示了本文模型的正确性和辛方法的有效性。 展开更多
关键词 矩形中厚板 辛方法 HAMILTON算子 自由振动 屈曲载荷
下载PDF
一角点支撑对边两边固支正交各向异性矩形薄板振动的辛叠加方法
15
作者 叶雨农 额布日力吐 《应用数学和力学》 CSCD 北大核心 2024年第7期898-906,共9页
运用辛叠加方法研究了一角点支撑对边两边固支的正交各向异性矩形薄板的振动问题.首先由边界条件出发,将原振动问题分解为两个对边简支的子振动问题,再根据Hamilton体系的分离变量法分别得到两个子振动问题的级数展开解,然后利用叠加方... 运用辛叠加方法研究了一角点支撑对边两边固支的正交各向异性矩形薄板的振动问题.首先由边界条件出发,将原振动问题分解为两个对边简支的子振动问题,再根据Hamilton体系的分离变量法分别得到两个子振动问题的级数展开解,然后利用叠加方法得到原振动问题的辛叠加解.为了在具体计算中确定所得辛叠加的级数展开项,对该解计算正交各向异性矩形薄板的情形进行了收敛性分析.应用所得辛叠加解分别计算了一角点支撑对边两边固支的各向同性和正交各向异性矩形薄板的振动频率,进而给出了正交各向异性方形薄板的前8阶振动频率所对应的模态. 展开更多
关键词 正交各向异性矩形薄板 HAMILTON体系 辛叠加方法 振动
下载PDF
Kirchhoff型分数阶Hamiltonian系统基态解的存在性和集中性 被引量:1
16
作者 薛婷婷 曹虹 +1 位作者 姜永胜 刘元彬 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期1107-1117,共11页
研究一类Kirchhoff型分数阶Hamiltonian系统基态解的存在性和渐近行为.通过构造合适的分数阶空间,在对称矩阵L(t)满足半正定的条件下,给出新的嵌入定理及几个重要的不等式,利用临界点理论,得到上述系统基态解的存在性和集中性结果.
关键词 Kirchhoff型方程 分数阶hamiltonian系统 Nehari流形方法 基态解 集中性.
下载PDF
ARBITRARILY HIGH-ORDER ENERGY-CONSERVING METHODS FOR HAMILTONIAN PROBLEMS WITH QUADRATIC HOLONOMIC CONSTRAINTS
17
作者 Pierluigi Amodio Luigi Brugnano +1 位作者 Gianluca Frasca-Caccia Felice Iavernaro 《Journal of Computational Mathematics》 SCIE CSCD 2024年第4期1145-1171,共27页
In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework... In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework.Numerical tests to illustrate the theoretical findings are presented. 展开更多
关键词 Constrained hamiltonian systems Quadratic holonomic constraints Energy-conserving methods Line integral methods hamiltonian Boundary Value methods HB-VMs
原文传递
势函数V(r)=Z^2r^(-4)-d_1d_2r^(-3)的离子的Hamiltonian本征方程的精确解 被引量:2
18
作者 周国中 《徐州师范大学学报(自然科学版)》 CAS 2004年第1期51-54,共4页
采用连分法,得到离子之间相互作用势为V(r)=Z2r-4-d1d2r-3的离子的Hamiltonian算符的精确能量本征值和能量本征函数.
关键词 势函数 hamiltonian本征方程 精确解 连分法 离子 原子 量子化学
下载PDF
板问题混合变量等参 Hamiltonian 元的半解析解 被引量:2
19
作者 邹贵平 唐立民 《上海力学》 CSCD 1993年第4期16-25,共10页
本文给出板问题混合变量方程的一种半离散半解析方法——混合变量等参 Hamillonian 元。该方法沿板厚方向未作任何有关位移和应力的人为假设,而是采用控制论中方法给出真解,所以可以求解任意厚度板问题。
关键词 材料力学 变分原理 半解析法
下载PDF
饱和非线性光学介质中带折射率项的薛定谔方程的数值模拟
20
作者 张静娴 孙建强 杨斯淇 《海南大学学报(自然科学版)》 CAS 2024年第2期121-129,共9页
首先将带折射率项的非线性薛定谔方程转化成无限维哈密尔顿系统,证明了方程的质量和能量守恒特性;再利用傅里叶拟谱方法和平均向量场方法离散方程,对离散格式中非积分项采用Boole离散进行线积分近似,得到了离散方程的能量守恒数值格式,... 首先将带折射率项的非线性薛定谔方程转化成无限维哈密尔顿系统,证明了方程的质量和能量守恒特性;再利用傅里叶拟谱方法和平均向量场方法离散方程,对离散格式中非积分项采用Boole离散进行线积分近似,得到了离散方程的能量守恒数值格式,同时给出了方程的辛格式;然后以不同振幅的入射双曲正割型光脉冲为初值条件,模拟了保能量格式和辛格式在不同参数条件下光孤子的演化过程.最后分析了不同初始光脉冲和参数对光孤子传输的影响和保方程质量和能量守恒特性. 展开更多
关键词 带折射率项的薛定谔方程 光孤子传输 哈密尔顿系统 平均向量场方法
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部