The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electroma...The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.展开更多
A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding bro...A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a rela...Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a relation between the effective Hamiltonian in the Shr?dinger picture and the corresponding effective Hamiltonian in the interaction picture.Finally, we present a relation between our effective Hamiltonian method and the James–Jerke method which is currently used by many authors to calculate effective Hamiltonians in quantum information science.展开更多
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ...The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.展开更多
Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective H...Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.展开更多
An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, ...An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.展开更多
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved hav...By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IH...Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IHMC(Improved HMC)方法,该方法用Velocity Verlet积分器替代Leapfrog积分器,每次迭代时都计算两变量在同一时刻的值.为验证方法的效果,本文进行了两个实验,一个是将该方法应用于非对称随机波动率模型(RASV模型)的参数估计,另一个是将方法应用于方差伽马分布的抽样,结果显示:IHMC方法比HMC方法的效率更高、结果更稳定.展开更多
In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework...In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework.Numerical tests to illustrate the theoretical findings are presented.展开更多
基金Project supported by the National Natural Science Foundation of China(11964010,11564013 and 11464014)the Natural Science Foundation of Hunan Province(2020JJ4495)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(22A0377 and 21A0333)the Jishou University Innovation Foundation for Postgraduate(Jdy20038)。
文摘The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674059)
文摘Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a relation between the effective Hamiltonian in the Shr?dinger picture and the corresponding effective Hamiltonian in the interaction picture.Finally, we present a relation between our effective Hamiltonian method and the James–Jerke method which is currently used by many authors to calculate effective Hamiltonians in quantum information science.
文摘Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
基金Project supported by the National Natural Science Foundation of China (No. 11071067)the Hunan Graduate Student Science and Technology Innovation Project (No. CX2011B184)
文摘The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No. 11774328)。
文摘Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.
文摘An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.
基金Project supported by the National Natural Science Foundation of China (No.10471038)
文摘By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
文摘Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IHMC(Improved HMC)方法,该方法用Velocity Verlet积分器替代Leapfrog积分器,每次迭代时都计算两变量在同一时刻的值.为验证方法的效果,本文进行了两个实验,一个是将该方法应用于非对称随机波动率模型(RASV模型)的参数估计,另一个是将方法应用于方差伽马分布的抽样,结果显示:IHMC方法比HMC方法的效率更高、结果更稳定.
文摘In this paper,we define arbitrarily high-order energy-conserving methods for Hamilto-nian systems with quadratic holonomic constraints.The derivation of the methods is made within the so-called line integral framework.Numerical tests to illustrate the theoretical findings are presented.