Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and suffici...Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity.展开更多
The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edg...The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11371185,11101200 and 11361034)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111501110001)+1 种基金Major Subject of Natural Science Foundation of Inner Mongolia of China(Grant No.2013ZD01)Natural Science Foundation of Inner Mongolia of China(Grant No.2012MS0105)
文摘Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity.
基金supported by the National Natural Science Foundation of China(Grant No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)+1 种基金the Natural Science Foundation of Inner Mongolia(Grant No. 20080404MS0104)the Research Foundation for Talented Scholars of Inner Mongolia University(Grant No. 207066)
文摘The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.