Hand veins can be used effectively in biometric recognition since they are internal organs that,in contrast to fingerprints,are robust under external environment effects such as dirt and paper cuts.Moreover,they form ...Hand veins can be used effectively in biometric recognition since they are internal organs that,in contrast to fingerprints,are robust under external environment effects such as dirt and paper cuts.Moreover,they form a complex rich shape that is unique,even in identical twins,and allows a high degree of freedom.However,most currently employed hand-based biometric systems rely on hand-touch devices to capture images with the desired quality.Since the start of the COVID-19 pandemic,most handbased biometric systems have become undesirable due to their possible impact on the spread of the pandemic.Consequently,new contactless hand-based biometric recognition systems and databases are desired to keep up with the rising hygiene awareness.One contribution of this research is the creation of a database for hand dorsal veins images obtained contact-free with a variation in capturing distance and rotation angle.This database consists of 1548 images collected from 86 participants whose ages ranged from 19 to 84 years.For the other research contribution,a novel geometrical feature extraction method has been developed based on the Curvelet Transform.This method is useful for extracting robust rotation invariance features from vein images.The database attributes and the veins recognition results are analyzed to demonstrate their efficacy.展开更多
Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown...Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).展开更多
基金This research was funded by Al-Zaytoonah University of Jordan Grant Number(2020-2019/12/11).
文摘Hand veins can be used effectively in biometric recognition since they are internal organs that,in contrast to fingerprints,are robust under external environment effects such as dirt and paper cuts.Moreover,they form a complex rich shape that is unique,even in identical twins,and allows a high degree of freedom.However,most currently employed hand-based biometric systems rely on hand-touch devices to capture images with the desired quality.Since the start of the COVID-19 pandemic,most handbased biometric systems have become undesirable due to their possible impact on the spread of the pandemic.Consequently,new contactless hand-based biometric recognition systems and databases are desired to keep up with the rising hygiene awareness.One contribution of this research is the creation of a database for hand dorsal veins images obtained contact-free with a variation in capturing distance and rotation angle.This database consists of 1548 images collected from 86 participants whose ages ranged from 19 to 84 years.For the other research contribution,a novel geometrical feature extraction method has been developed based on the Curvelet Transform.This method is useful for extracting robust rotation invariance features from vein images.The database attributes and the veins recognition results are analyzed to demonstrate their efficacy.
基金supported by the National Natural Science Foundation of China,No.U1613228a grant from the Sub-Project under National “Twelfth Five-Year” Plan for Science & Technology Support Project in China,No.2011BAI08B11+1 种基金a grant from the Beijing Municipal Science & Technology Commission in China,No.Z161100002616018the Special Fund for Basic Scientific Research Business of Central Public Scientific Research Institutes in China,No.2014CZ-5,2015CZ-30
文摘Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).