As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) a...To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.展开更多
The scheme of robot positioning based on multiple quick response(QR)code landmarks is proposed.Firstly,the pose of the robot relative to the QR code landmarks is obtained by extracting the feature points of the QR cod...The scheme of robot positioning based on multiple quick response(QR)code landmarks is proposed.Firstly,the pose of the robot relative to the QR code landmarks is obtained by extracting the feature points of the QR code,combined with the visual computing technology.Then,the conversion of the absolute pose of the robot is completed based on the absolute position of the QR code landmark,and thus the real-time position of the robot is obtained.The proposed scheme makes full use of the QR code fault tolerance and multiple QR code landmarks to improve the calculation accuracy.It has good robustness and versatility,and it is easy to implement.It can help the robot to complete the positioning in the actual work,making robot navigation more accurate.展开更多
In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it i...In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it is more widely used than the visual odometer based on feature point method.Ordinary vision sensors have a narrower viewing angle than panoramic vision sensors,and there are fewer road signs in a single frame of image,resulting in poor road sign tracking and positioning capabilities,and severely restricting the development of visual odometry.Based on these considerations,this paper proposes a binocular stereo panoramic vision positioning algorithm based on extended DSO,which can solve these problems well.The experimental results show that the binocular stereo panoramic vision positioning algorithm based on the extended DSO can directly obtain the panoramic depth image around the UGV,which greatly improves the accuracy and robustness of the visual positioning compared with other ordinary visual odometers.It will have widely application prospects in the UGV field in the future.展开更多
In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at t...In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.展开更多
Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered ...Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.展开更多
Many mobile robotics applications, especially in industrial environments, require the robot to perform safe navigation and then reach the goal with a high precision. In this research work, the objective is to analyze ...Many mobile robotics applications, especially in industrial environments, require the robot to perform safe navigation and then reach the goal with a high precision. In this research work, the objective is to analyze the appropriateness of autonomous natural navigation strategies for mobile manipulation tasks. The system must position itself in a realistic map, follow a path closely and then achieve an accurate positioning in the destination point in order to be able to perform the manipulation, inspection or pick task efficiently. Autonomous navigation is not able to fulfill the accuracy required by some of the jobs so that a second positioning system using vision is proposed in this paper. The experiments show that localization systems have, on average, an error greater than a decimetre and how an additional positioning system can reduce it to a few millimetres.展开更多
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Projects(60775049,60805033) supported by the National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.
基金Project of Introducing Urgently Needed Talents in Key Support Areas of Shandong Province,China。
文摘The scheme of robot positioning based on multiple quick response(QR)code landmarks is proposed.Firstly,the pose of the robot relative to the QR code landmarks is obtained by extracting the feature points of the QR code,combined with the visual computing technology.Then,the conversion of the absolute pose of the robot is completed based on the absolute position of the QR code landmark,and thus the real-time position of the robot is obtained.The proposed scheme makes full use of the QR code fault tolerance and multiple QR code landmarks to improve the calculation accuracy.It has good robustness and versatility,and it is easy to implement.It can help the robot to complete the positioning in the actual work,making robot navigation more accurate.
基金the Project of National Natural Science Foundation of China(Grant No.61773059)the Project of National Defense Technology Foundation Program of China(Grant No.20230028) to provide fund for conducting experiments。
文摘In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it is more widely used than the visual odometer based on feature point method.Ordinary vision sensors have a narrower viewing angle than panoramic vision sensors,and there are fewer road signs in a single frame of image,resulting in poor road sign tracking and positioning capabilities,and severely restricting the development of visual odometry.Based on these considerations,this paper proposes a binocular stereo panoramic vision positioning algorithm based on extended DSO,which can solve these problems well.The experimental results show that the binocular stereo panoramic vision positioning algorithm based on the extended DSO can directly obtain the panoramic depth image around the UGV,which greatly improves the accuracy and robustness of the visual positioning compared with other ordinary visual odometers.It will have widely application prospects in the UGV field in the future.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.
基金Project (No. ZD0107) supported by Natural Science Foundation of Zhejiang Province, China
文摘Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.
文摘Many mobile robotics applications, especially in industrial environments, require the robot to perform safe navigation and then reach the goal with a high precision. In this research work, the objective is to analyze the appropriateness of autonomous natural navigation strategies for mobile manipulation tasks. The system must position itself in a realistic map, follow a path closely and then achieve an accurate positioning in the destination point in order to be able to perform the manipulation, inspection or pick task efficiently. Autonomous navigation is not able to fulfill the accuracy required by some of the jobs so that a second positioning system using vision is proposed in this paper. The experiments show that localization systems have, on average, an error greater than a decimetre and how an additional positioning system can reduce it to a few millimetres.