This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task...This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task requirements, the geometrical and physical features of the object and the information from the environment are synthesized. Grasp pose is deduced by task analysis, and the graspable plane is sought and determined. The process of grasp planning is finally carried out by determining three grasp points on the feasible grasp plane.展开更多
In the robotic community more and more hands are developed. Based on theexperience of HIT Hand and DLR Hand II, a smaller and easier manufactured dexterous robot hand withmultisen-sory function and high integration is...In the robotic community more and more hands are developed. Based on theexperience of HIT Hand and DLR Hand II, a smaller and easier manufactured dexterous robot hand withmultisen-sory function and high integration is jointly developed. The prototype of the hand issuccessfully built. It has 4 fingers in total 13-DOFs (degree of freedom). Each finger has 3-DOFsand 4 joints, the last 2 joints are mechanically coupled by means of four-bar linkage mechanism. Italso has an additional DOF to realize motion of the thumb relative to the palm. The fingertip forcecan reach up to 10 N. Full integration of mechanical body, actuation system, multisensory system andelectronics is a significant feature. DSP based control system is implemented in PCI busarchitecture and the serial communication between the hand and DSP needs only 2 lines.展开更多
It is important for robotic hands to obtain optimal grasping performance inthe meanwhile balancing external forces and maintaining grasp stability. The problem of forceoptimization of grasping is solved in the space o...It is important for robotic hands to obtain optimal grasping performance inthe meanwhile balancing external forces and maintaining grasp stability. The problem of forceoptimization of grasping is solved in the space of joint torques. A measure of grasping performanceis presented to protect joint actuators from working in heavy payloads. The joint torques arecalculated for the optimal performance under the frictional constraints and the physical limits ofmotor outputs. By formulating the grasping forces into the explicit function of joint torques, thefrictional constraints imposed on the grasping forces are transformed into the constraints on jointtorques. Without further simplification, the nonlinear frictional constraints can be simply handledin the process of optimization. Two numerical examples demonstrate the simplicity and effectivenessof the approach.展开更多
Robotic fingers, which are the key parts of robot hand, are divided into two main kinds: dexterous fingers and under-actuated fingers. Although dexterous fingers are agile, they are too expensive. Under-actuated fing...Robotic fingers, which are the key parts of robot hand, are divided into two main kinds: dexterous fingers and under-actuated fingers. Although dexterous fingers are agile, they are too expensive. Under-actuated fingers can grasp objects self-adaptively, which makes them easy to control and low cost, on the contrary, under-actuated function makes fingers feel hard to grasp things agilely enough and make many gestures. For the purpose of designing a new finger which can grasp things dexterously, perform many gestures and feel easy to control and maintain, a concept called "gesture-changeable under-actuated" (GCUA) function is put forward. The GCUA function combines the advantages of dexterous fingers and under-actuated fingers: a pre-bending function is embedded into the under-actuated finger. The GCUA finger can not only perform self-adaptive grasping function, but also actively bend the middle joint of the finger. On the basis of the concept, a GCUA finger with 2 joints is designed, which is realized by the coordination of screw-nut transmission mechanism, flexible drawstring constraint and pulley-belt under-actuated mechanism. Principle analyses of its grasping and the design optimization of the GCUA finger are given. An important problem of how to stably grasp an object which is easy to glide is discussed. The force analysis on gliding object in grasping process is introduced in detail. A GCUA finger with 3 joints is developed. Many experiments of grasping different objects by of the finger were carried out. The experimental results show that the GCUA finger can effectively realize functions of pre-bending and self-adaptive grasping, the grasping processes are stable. The GCUA finger excels under-actuated fingers in dexterity and gesture actions and it is easier to control and cheaper than dexterous hands, becomes the third kinds of finger.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. How...Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.展开更多
Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as me...Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.展开更多
A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro...A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.展开更多
A model-free set-point tracking control approach of multi-fingered robot hand is presented.The set-point tracking controller,which has the structural form of PD controller,is composed with a combination of feedforward...A model-free set-point tracking control approach of multi-fingered robot hand is presented.The set-point tracking controller,which has the structural form of PD controller,is composed with a combination of feedforward term,feedback term and saturation control term.The controller does not require the explicit use of dynamic modeling parameters.Experiments performed on the HIT/DLR hand demonstrate the effectiveness of the proposed approach in performance improvement and real-time application.展开更多
With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size ...With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size and more torque. The use of rigid gear head,bevel gears and linkage in the transmission system makes the finger more rigid. Abundant sensors such as joint angle sensors,joint torque sensors and temperature sensors are located in the finger. Integration and modularization are achieved at most by high integration of finger body,driving system,sensors and electronics.展开更多
The dynamics properties of a kind of multi-fingered robot hand is analyzed. It is pointed out that the dynamics property of this kind of multifingered robot hand in the approaching process is quite different from that...The dynamics properties of a kind of multi-fingered robot hand is analyzed. It is pointed out that the dynamics property of this kind of multifingered robot hand in the approaching process is quite different from that in the grasping process and,different control algorithm should be taken in the two process. A position-force hybrid control algorithm is proposed which is applied to the control system of the University of Science and Technology Beijing double-thumb robot hand successfully.展开更多
This paper proposes an incipient slip detection method for a robotic hand based on the vibration power of the pressure center. Firstly,an array-type pressure sensor was planted into the soft skin of the robotic hand t...This paper proposes an incipient slip detection method for a robotic hand based on the vibration power of the pressure center. Firstly,an array-type pressure sensor was planted into the soft skin of the robotic hand to measure the stick-slip vibration component of the pressure center generated in the process of slip of the grasped object. Secondly,the vibration power of the pressure center was calculated based on the measured stick-slip vibration component,and was used as a slip-detection function to judge the incipient slip of the grasped object. Finally,in order to use the same threshold value to judge incipient slip for different grasping forces,a weight coefficient was experimentally identified and used in the slip-detection function. The effectiveness of the proposed slip detection method was verified by experimental results,which showed that incipient slip can be detected by the proposed slip-detection function with the same threshold value for various materials,different slipping speeds grasping forces. In addition,multiple iterations of the experiment had demonstrated that the slip detection is repeatable.展开更多
In the development of robotic limbs, the side of members is of importance to define the shape of artificial limbs and the range of movements. It is mainly significant tbr biomedical applications concerning patients su...In the development of robotic limbs, the side of members is of importance to define the shape of artificial limbs and the range of movements. It is mainly significant tbr biomedical applications concerning patients suffering arms or legs injuries, fn this paper, the concept of an ambidextrous design lbr robot hands is introduced. The fingers can curl in one xvay or another, to imitate either a right hand or a left hand. The advantages and inconveniences of different models have been investigated to optimise the range and the maximum force applied by fingers. Besides, a remote control interthce is integrated to the system, allowing both to send comrnands through internet and to display a video streaming of the ambidextrous hand as feedback. Therefore, a robotic prosthesis could be used for the first time in telerehabilitation. The main application areas targeted are physiotherapy alter strokes or management of phantom pains/br amputees by/earning to control the ambidextrous hand. A client application is also accessible on Facehook social network, making the robotic limb easily reachable for the patients. Additionally the ambidextrous hand can be used tbr robotics research as well as artistic performances.展开更多
This research characterizes grasping by multifingered robot hands through investiga- tion of the space of contact forces into four subspaces , a method is developed to determine the di- mensions of the subspaces with ...This research characterizes grasping by multifingered robot hands through investiga- tion of the space of contact forces into four subspaces , a method is developed to determine the di- mensions of the subspaces with respect to the connectivity of the object. The relationship reveals the differences between three types of grasps classified and indicates how the contact force can be decomposed corresponding to each type of grasp. The subspaces and the determination of their di- mensions are illlustrated by examples.展开更多
This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output...This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.展开更多
To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar...To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.展开更多
This paper focuses on multi-modal Information Perception(IP)for Soft Robotic Hands(SRHs)using Machine Learning(ML)algorithms.A flexible Optical Fiber-based Curvature Sensor(OFCS)is fabricated,consisting of a Light-Emi...This paper focuses on multi-modal Information Perception(IP)for Soft Robotic Hands(SRHs)using Machine Learning(ML)algorithms.A flexible Optical Fiber-based Curvature Sensor(OFCS)is fabricated,consisting of a Light-Emitting Diode(LED),photosensitive detector,and optical fiber.Bending the roughened optical fiber generates lower light intensity,which reflecting the curvature of the soft finger.Together with the curvature and pressure information,multi-modal IP is performed to improve the recognition accuracy.Recognitions of gesture,object shape,size,and weight are implemented with multiple ML approaches,including the Supervised Learning Algorithms(SLAs)of K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Logistic Regression(LR),and the unSupervised Learning Algorithm(un-SLA)of K-Means Clustering(KMC).Moreover,Optical Sensor Information(OSI),Pressure Sensor Information(PSI),and Double-Sensor Information(DSI)are adopted to compare the recognition accuracies.The experiment results demonstrate that the proposed sensors and recognition approaches are feasible and effective.The recognition accuracies obtained using the above ML algorithms and three modes of sensor information are higer than 85 percent for almost all combinations.Moreover,DSI is more accurate when compared to single modal sensor information and the KNN algorithm with a DSI outperforms the other combinations in recognition accuracy.展开更多
Although significant advances in the design of soft robotic hands have been made to mimic the structure of the human hands,there are great challenges to control them for coordinated and human-like postures.Based on th...Although significant advances in the design of soft robotic hands have been made to mimic the structure of the human hands,there are great challenges to control them for coordinated and human-like postures.Based on the principle of postural synergies in the human hand,we present a synergistic approach for coordinated control of a soft robotic hand to replicate the human-like grasp postures.To this end,we firstly develop a kinematic model to describe the control variables and the various postures of the soft robotic hand.Based on the postural synergies,we use the developed model and Principal Component Analysis(PCA)method to describe the various postures of the soft robotic hand in a low-dimensional space formed by the synergies of actuator motions.Therefore,the coordinates of these synergies can be used as low-dimensional control inputs for the soft robotic hand with a higher-dimensional postural space.Finally,we establish an experimental platform on a customized soft robotic hand with6 pneumatical actuators to verify the effectiveness of the development.Experimental results demonstrate that with only a 2-dimensional control input,the soft robotic hand can reliably replicate 30 grasp postures in the Feix taxonomy of the human hand.展开更多
In this study, we improved an underactuated finger mechanism by using Solidworks to simulate the grasp operation of a finger in some different situations. In addition, a robot palm is designed for the three-finger rob...In this study, we improved an underactuated finger mechanism by using Solidworks to simulate the grasp operation of a finger in some different situations. In addition, a robot palm is designed for the three-finger robot hand with the designed underactuated fingers. A Solidworks simulation was used to verify the rationality of the design. Some parts of the hand were modified to fit for 3D printing, and a prototype of the hand was produced by 3D printing, which could reduce the cost of the production process, as well as provide design flexibility and other advantages. Finally, some grasping experiments were made with the prototype. The results showed that the robot could grasp objects with different sizes, and further verified the rationality of the design and feasibility of fabricating the robot hand using 3D printing.展开更多
文摘This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task requirements, the geometrical and physical features of the object and the information from the environment are synthesized. Grasp pose is deduced by task analysis, and the graspable plane is sought and determined. The process of grasp planning is finally carried out by determining three grasp points on the feasible grasp plane.
文摘In the robotic community more and more hands are developed. Based on theexperience of HIT Hand and DLR Hand II, a smaller and easier manufactured dexterous robot hand withmultisen-sory function and high integration is jointly developed. The prototype of the hand issuccessfully built. It has 4 fingers in total 13-DOFs (degree of freedom). Each finger has 3-DOFsand 4 joints, the last 2 joints are mechanically coupled by means of four-bar linkage mechanism. Italso has an additional DOF to realize motion of the thumb relative to the palm. The fingertip forcecan reach up to 10 N. Full integration of mechanical body, actuation system, multisensory system andelectronics is a significant feature. DSP based control system is implemented in PCI busarchitecture and the serial communication between the hand and DSP needs only 2 lines.
基金This project is supported by National Natural Science Foundation of China (No.59985001)Doctoral Grant of Education Ministry of China (No.2000000605)
文摘It is important for robotic hands to obtain optimal grasping performance inthe meanwhile balancing external forces and maintaining grasp stability. The problem of forceoptimization of grasping is solved in the space of joint torques. A measure of grasping performanceis presented to protect joint actuators from working in heavy payloads. The joint torques arecalculated for the optimal performance under the frictional constraints and the physical limits ofmotor outputs. By formulating the grasping forces into the explicit function of joint torques, thefrictional constraints imposed on the grasping forces are transformed into the constraints on jointtorques. Without further simplification, the nonlinear frictional constraints can be simply handledin the process of optimization. Two numerical examples demonstrate the simplicity and effectivenessof the approach.
基金supported by National Natural Science Foundation of China (No. 50905093)National Hi-tech Research and Development Program of China(863 Program,Grant No.2007AA04Z258)
文摘Robotic fingers, which are the key parts of robot hand, are divided into two main kinds: dexterous fingers and under-actuated fingers. Although dexterous fingers are agile, they are too expensive. Under-actuated fingers can grasp objects self-adaptively, which makes them easy to control and low cost, on the contrary, under-actuated function makes fingers feel hard to grasp things agilely enough and make many gestures. For the purpose of designing a new finger which can grasp things dexterously, perform many gestures and feel easy to control and maintain, a concept called "gesture-changeable under-actuated" (GCUA) function is put forward. The GCUA function combines the advantages of dexterous fingers and under-actuated fingers: a pre-bending function is embedded into the under-actuated finger. The GCUA finger can not only perform self-adaptive grasping function, but also actively bend the middle joint of the finger. On the basis of the concept, a GCUA finger with 2 joints is designed, which is realized by the coordination of screw-nut transmission mechanism, flexible drawstring constraint and pulley-belt under-actuated mechanism. Principle analyses of its grasping and the design optimization of the GCUA finger are given. An important problem of how to stably grasp an object which is easy to glide is discussed. The force analysis on gliding object in grasping process is introduced in detail. A GCUA finger with 3 joints is developed. Many experiments of grasping different objects by of the finger were carried out. The experimental results show that the GCUA finger can effectively realize functions of pre-bending and self-adaptive grasping, the grasping processes are stable. The GCUA finger excels under-actuated fingers in dexterity and gesture actions and it is easier to control and cheaper than dexterous hands, becomes the third kinds of finger.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Supported by Joint Funds of National Natural Science Foundation of China(Grant No.U1613201)Shenzhen Research Funds(JCYJ20170413104438332)
文摘Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
文摘Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.
文摘A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.
基金Sponsored by the Program for New Century Excellent Talents in University (Grant No:NCET-09-0056)the National High Technology Research and Development Program of China (Grant No.2009AA043803)
文摘A model-free set-point tracking control approach of multi-fingered robot hand is presented.The set-point tracking controller,which has the structural form of PD controller,is composed with a combination of feedforward term,feedback term and saturation control term.The controller does not require the explicit use of dynamic modeling parameters.Experiments performed on the HIT/DLR hand demonstrate the effectiveness of the proposed approach in performance improvement and real-time application.
基金Sponsored by the High Technology Research and Development Program of China(Grant No.2008AA04Z203)Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.010)
文摘With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size and more torque. The use of rigid gear head,bevel gears and linkage in the transmission system makes the finger more rigid. Abundant sensors such as joint angle sensors,joint torque sensors and temperature sensors are located in the finger. Integration and modularization are achieved at most by high integration of finger body,driving system,sensors and electronics.
文摘The dynamics properties of a kind of multi-fingered robot hand is analyzed. It is pointed out that the dynamics property of this kind of multifingered robot hand in the approaching process is quite different from that in the grasping process and,different control algorithm should be taken in the two process. A position-force hybrid control algorithm is proposed which is applied to the control system of the University of Science and Technology Beijing double-thumb robot hand successfully.
文摘This paper proposes an incipient slip detection method for a robotic hand based on the vibration power of the pressure center. Firstly,an array-type pressure sensor was planted into the soft skin of the robotic hand to measure the stick-slip vibration component of the pressure center generated in the process of slip of the grasped object. Secondly,the vibration power of the pressure center was calculated based on the measured stick-slip vibration component,and was used as a slip-detection function to judge the incipient slip of the grasped object. Finally,in order to use the same threshold value to judge incipient slip for different grasping forces,a weight coefficient was experimentally identified and used in the slip-detection function. The effectiveness of the proposed slip detection method was verified by experimental results,which showed that incipient slip can be detected by the proposed slip-detection function with the same threshold value for various materials,different slipping speeds grasping forces. In addition,multiple iterations of the experiment had demonstrated that the slip detection is repeatable.
文摘In the development of robotic limbs, the side of members is of importance to define the shape of artificial limbs and the range of movements. It is mainly significant tbr biomedical applications concerning patients suffering arms or legs injuries, fn this paper, the concept of an ambidextrous design lbr robot hands is introduced. The fingers can curl in one xvay or another, to imitate either a right hand or a left hand. The advantages and inconveniences of different models have been investigated to optimise the range and the maximum force applied by fingers. Besides, a remote control interthce is integrated to the system, allowing both to send comrnands through internet and to display a video streaming of the ambidextrous hand as feedback. Therefore, a robotic prosthesis could be used for the first time in telerehabilitation. The main application areas targeted are physiotherapy alter strokes or management of phantom pains/br amputees by/earning to control the ambidextrous hand. A client application is also accessible on Facehook social network, making the robotic limb easily reachable for the patients. Additionally the ambidextrous hand can be used tbr robotics research as well as artistic performances.
文摘This research characterizes grasping by multifingered robot hands through investiga- tion of the space of contact forces into four subspaces , a method is developed to determine the di- mensions of the subspaces with respect to the connectivity of the object. The relationship reveals the differences between three types of grasps classified and indicates how the contact force can be decomposed corresponding to each type of grasp. The subspaces and the determination of their di- mensions are illlustrated by examples.
基金supported by the Anhui Provincial Key Research and Development Program No.2022f04020008National Natural Science Foundation of China No.62301522Anhui Provincial Nature Science Foundation No.1908085MF196.
文摘This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.
文摘To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.
基金support provided by the National Natural Science Foundation of China (Nos. 61803267 and 61572328)the China Postdoctoral Science Foundation (No.2017M622757)+1 种基金the Beijing Science and Technology program (No.Z171100000817007)the National Science Foundation of China (NSFC) and the German Re-search Foundation (DFG) in the project Cross Modal Learning,NSFC 61621136008/DFG TRR-169
文摘This paper focuses on multi-modal Information Perception(IP)for Soft Robotic Hands(SRHs)using Machine Learning(ML)algorithms.A flexible Optical Fiber-based Curvature Sensor(OFCS)is fabricated,consisting of a Light-Emitting Diode(LED),photosensitive detector,and optical fiber.Bending the roughened optical fiber generates lower light intensity,which reflecting the curvature of the soft finger.Together with the curvature and pressure information,multi-modal IP is performed to improve the recognition accuracy.Recognitions of gesture,object shape,size,and weight are implemented with multiple ML approaches,including the Supervised Learning Algorithms(SLAs)of K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Logistic Regression(LR),and the unSupervised Learning Algorithm(un-SLA)of K-Means Clustering(KMC).Moreover,Optical Sensor Information(OSI),Pressure Sensor Information(PSI),and Double-Sensor Information(DSI)are adopted to compare the recognition accuracies.The experiment results demonstrate that the proposed sensors and recognition approaches are feasible and effective.The recognition accuracies obtained using the above ML algorithms and three modes of sensor information are higer than 85 percent for almost all combinations.Moreover,DSI is more accurate when compared to single modal sensor information and the KNN algorithm with a DSI outperforms the other combinations in recognition accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52025057,91948302)the Science and Technology Commission of Shanghai Municipality(Grant No.20550712100)。
文摘Although significant advances in the design of soft robotic hands have been made to mimic the structure of the human hands,there are great challenges to control them for coordinated and human-like postures.Based on the principle of postural synergies in the human hand,we present a synergistic approach for coordinated control of a soft robotic hand to replicate the human-like grasp postures.To this end,we firstly develop a kinematic model to describe the control variables and the various postures of the soft robotic hand.Based on the postural synergies,we use the developed model and Principal Component Analysis(PCA)method to describe the various postures of the soft robotic hand in a low-dimensional space formed by the synergies of actuator motions.Therefore,the coordinates of these synergies can be used as low-dimensional control inputs for the soft robotic hand with a higher-dimensional postural space.Finally,we establish an experimental platform on a customized soft robotic hand with6 pneumatical actuators to verify the effectiveness of the development.Experimental results demonstrate that with only a 2-dimensional control input,the soft robotic hand can reliably replicate 30 grasp postures in the Feix taxonomy of the human hand.
基金supported by National Natural Science Foundation of China (Nos. 51375504 and 61602539)the Program for New Century Excellent Talents in University
文摘In this study, we improved an underactuated finger mechanism by using Solidworks to simulate the grasp operation of a finger in some different situations. In addition, a robot palm is designed for the three-finger robot hand with the designed underactuated fingers. A Solidworks simulation was used to verify the rationality of the design. Some parts of the hand were modified to fit for 3D printing, and a prototype of the hand was produced by 3D printing, which could reduce the cost of the production process, as well as provide design flexibility and other advantages. Finally, some grasping experiments were made with the prototype. The results showed that the robot could grasp objects with different sizes, and further verified the rationality of the design and feasibility of fabricating the robot hand using 3D printing.