An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight ...An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight stages are constructed ; and the velocity gain midcourse guidance law and the robust variable structure terminal guidance law are designed. Then the optimization parameters and their constraints affecting the intercept performance are determined. The genetic algorithm (GA) with the advantage of global optimization is used to deal with the intercept optimization problem. The performance index of the optimization is composed of the minimum fuel consumption and the minimum miss distance of the interception. Finally, optimization results of GA and the complex algorithm (CA) are compared. Simulation results show that compared with the traditional opti- mization method, GA can converge to the global optimization better in solving the complex constrained nonlinear combinatorial optimization of the exo-atmospheric interceptor, and reduce the fuel consumption and the miss distance.展开更多
文摘An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight stages are constructed ; and the velocity gain midcourse guidance law and the robust variable structure terminal guidance law are designed. Then the optimization parameters and their constraints affecting the intercept performance are determined. The genetic algorithm (GA) with the advantage of global optimization is used to deal with the intercept optimization problem. The performance index of the optimization is composed of the minimum fuel consumption and the minimum miss distance of the interception. Finally, optimization results of GA and the complex algorithm (CA) are compared. Simulation results show that compared with the traditional opti- mization method, GA can converge to the global optimization better in solving the complex constrained nonlinear combinatorial optimization of the exo-atmospheric interceptor, and reduce the fuel consumption and the miss distance.