期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
AN ADAPTIVELY TRAINED KERNEL-BASED NONLINEAR REPRESENTOR FOR HANDWRITTEN DIGIT CLASSIFICATION 被引量:12
1
作者 Liu Benyong Zhang Jing 《Journal of Electronics(China)》 2006年第3期379-383,共5页
In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recentl... In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recently presented nonlinear classifier for optimal pattern representation, so that its generalization ability may be evaluated in time-variant situation and a sparser representation is obtained for computationally intensive tasks. The addressed techniques are applied to handwritten digit classification to illustrate the feasibility for pattern recognition. 展开更多
关键词 Pattern recognition handwritten digit recognition Incremental learning Sparse representation Kernel-based Nonlinear Representor (KNR)
下载PDF
Handwritten digit recognition based on ghost imaging with deep learning 被引量:3
2
作者 Xing He Sheng-Mei Zhao Le Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期367-372,共6页
We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cos... We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing. 展开更多
关键词 ghost imaging handwritten digit recognition ghost handwritten recognition deep learning
下载PDF
MCS HOG Features and SVM Based Handwritten Digit Recognition System
3
作者 Hamayun A. Khan 《Journal of Intelligent Learning Systems and Applications》 2017年第2期21-33,共13页
Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of ... Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of Oriented Gradient (HOG) features and a Support Vector Machine (SVM) based classifier for efficient classification of Handwritten Digits. The HOG based technique is sensitive to the cell size selection used in the relevant feature extraction computations. Hence a new MCS approach has been used to perform HOG analysis and compute the HOG features. The system has been tested on the Benchmark MNIST Digit Database of handwritten digits and a classification accuracy of 99.36% has been achieved using an Independent Test set strategy. A Cross-Validation analysis of the classification system has also been performed using the 10-Fold Cross-Validation strategy and a 10-Fold classification accuracy of 99.26% has been obtained. The classification performance of the proposed system is superior to existing techniques using complex procedures since it has achieved at par or better results using simple operations in both the Feature Space and in the Classifier Space. The plots of the system’s Confusion Matrix and the Receiver Operating Characteristics (ROC) show evidence of the superior performance of the proposed new MCS HOG and SVM based digit classification system. 展开更多
关键词 handwritten digit Recognition MNIST Benchmark Database HOG ANALYSIS Multiple-Cell Size HOG ANALYSIS SVM Classifier 10-Fold Cross-Validation CONFUSION Matrix Receiver Operating Characteristics
下载PDF
Part-based methods for handwritten digit recognition 被引量:4
4
作者 Song WANG Seiichi UCHIDA +1 位作者 Marcus LIWICKI Yaokai FENG 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期514-525,共12页
In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and rec... In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and recognize the image by aggregating the recognition results of individual parts. Since part-based methods do not rely on the global structure of a character, they are expected to be more robust against various delormations which may damage the global structure. The proposed three methods are based on the same principle but different in their details, for example, the way of aggregating the individual results. Thus, those methods have different performances. Experimental results show that even the simplest part-based method can achieve recognition rate as high as 98.42% while the improved one achieved 99.15%, which is comparable or even higher than some state-of-the-art method. This result is important because it reveals that characters can be recognized without their global structure. The results also show that the part-based method has robustness against deformations which usually appear in handwriting. 展开更多
关键词 handwritten digit recognition local features part-based method
原文传递
Recognition of Handwritten Words from Digital Writing Pad Using MMU-SNet
5
作者 V.Jayanthi S.Thenmalar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3551-3564,共14页
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognit... In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognition for texts written from digital writing pad through text file conversion are challen-ging due to stylus pressure,writing on glass frictionless surfaces,and being less skilled in short writing,alphabet size,style,carved symbols,and orientation angle variations.Stylus pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines,angles,curves,and bends.The small change in dots,curves,and bends in the Tamil alphabet leads to error in recognition and changes the meaning of the words because of wrong alphabet conversion.However,handwritten English word recognition and conversion of text files from a digital writing pad are performed through various algorithms such as Support Vector Machine(SVM),Kohonen Neural Network(KNN),and Convolutional Neural Network(CNN)for offline and online alphabet recognition.The proposed algorithms are compared with above algorithms for Tamil word recognition.The proposed MMU-SNet method has achieved good accuracy in predicting text,about 96.8%compared to other traditional CNN algorithms. 展开更多
关键词 digital handwritten writing pad tamil text recognition SYLLABLE DIALECT
下载PDF
基于生成对抗网络的手写数字重叠图像分离与识别
6
作者 韦家成 董然 +3 位作者 蔡成涛 林小竹 宋慧佳 王翔宇 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第11期2226-2234,共9页
为解决手写数字重叠给识别带来的障碍,探索识别重叠手写数字的高效方法,本文提出一种采用生成对抗网络分离重叠手写数字的方法,将重叠手写数字分离成2个单独的数字后再进行识别。分别使用卷积层和反卷积层构建判别器和生成器,充分提取... 为解决手写数字重叠给识别带来的障碍,探索识别重叠手写数字的高效方法,本文提出一种采用生成对抗网络分离重叠手写数字的方法,将重叠手写数字分离成2个单独的数字后再进行识别。分别使用卷积层和反卷积层构建判别器和生成器,充分提取数字特征,减少模型参数量;融入自注意力机制,快速有效提取数字显著区域特征;对生成器和判别器进行谱归一,约束网络梯度;改进模型损失函数,提高生成器分离数字的质量。在通过MNIST数据集构造的数据上进行试验,结果表明:本文提出的方法对重叠手写数字的识别准确率达95.91%;峰值信噪比和结构相似性指数分别为22.11和0.8961,相比CapsNet网络模型有了显著提升。 展开更多
关键词 生成对抗网络 重叠手写数字分离 字符分割 字符识别 重叠目标识别 自注意力机制 深度学习 神经网络
下载PDF
基于深度学习的CNN手写体数字识别
7
作者 李伟 孙云娟 《洛阳理工学院学报(自然科学版)》 2024年第1期56-60,66,共6页
从深度学习卷积神经网络(CNN)的结构功能出发,重点研究了手写体数字通过神经网络的识别性能,以及当手写体数字染有各种噪声(高斯噪声、椒盐噪声、泊松噪声和斑点噪声等)时的性能。为了改善和提高卷积神经网络的性能,采用迁移学习技术,将... 从深度学习卷积神经网络(CNN)的结构功能出发,重点研究了手写体数字通过神经网络的识别性能,以及当手写体数字染有各种噪声(高斯噪声、椒盐噪声、泊松噪声和斑点噪声等)时的性能。为了改善和提高卷积神经网络的性能,采用迁移学习技术,将ReLu学习单元更换为LeakyReLu学习单元,其他层保持不变,其目的是为了进一步改善Sigmod神经元函数易饱和的缺点,提高了学习效率和速度。 展开更多
关键词 CNN 深度学习 手写体数字识别
下载PDF
基于卷积神经网络的手写数字识别技术研究
8
作者 余国庆 杨燕婷 +3 位作者 宗兆星 刘光宇 赵恩铭 周豹 《安徽电子信息职业技术学院学报》 2024年第3期1-5,共5页
手写数字识别与我们的生活和工作息息相关,传统的人工判断手写数字方式需要耗费大量精力,并且存在准确性不高和时效性不能保证的弊端。为解决这一问题,采用卷积神经网络方法来进行手写数字识别。首先将MNIST数据集划分为训练集与测试集... 手写数字识别与我们的生活和工作息息相关,传统的人工判断手写数字方式需要耗费大量精力,并且存在准确性不高和时效性不能保证的弊端。为解决这一问题,采用卷积神经网络方法来进行手写数字识别。首先将MNIST数据集划分为训练集与测试集,其次在MATLAB上搭建训练LeNet-5与AlexNet两种卷积神经网络模型,之后将测试集导入模型,测试性能,最后再将验证集导入验证模型性能。实验结果表明,AlexNet模型对验证集识别率高于LeNet-5模型,且AlexNet模型的稳定性优于LeNet-5。 展开更多
关键词 LeNet-5卷积神经网络 手写数字识别 MNIST数据集 AlexNet卷积神经网络
下载PDF
基于蜂鸟 E203 RISC-V 处理器的手写数字识别系统设计
9
作者 徐奕濠 罗莉 《现代计算机》 2024年第11期80-84,共5页
手写数字识别是计算机视觉领域的一个经典问题,在车牌识别、光学字符识别等领域有重要作用。在嵌入式设备中部署高性能的手写数字识别系统,由于受到ARM和X86架构的约束,其系统的算力、成本、功耗等指标均不理想。RISC-V架构具有开源、... 手写数字识别是计算机视觉领域的一个经典问题,在车牌识别、光学字符识别等领域有重要作用。在嵌入式设备中部署高性能的手写数字识别系统,由于受到ARM和X86架构的约束,其系统的算力、成本、功耗等指标均不理想。RISC-V架构具有开源、精简、扩展性强和指令编码规整等优势,近年在业内备受好评。对开源的蜂鸟E203 RISC-V处理器进行优化,并加入卷积神经网络协处理器单元完成对手写数字的识别。测试结果表明,在系统工作频率为25 MHz时,采用蜂鸟E203 RISC-V处理器设计的卷积神经网络协处理器在进行手写数字识别时,平均识别耗时1 ms,处理视频流数据平均帧数在912帧,正确率为98%,证实了本系统的可行性,体现了RISC-V对比ARM以及X86架构处理器的优越性。 展开更多
关键词 RISC-V E203 FPGA CNN 手写数字识别
下载PDF
贝叶斯分类器在手写数字分类识别中的应用
10
作者 何煦 《变频器世界》 2024年第3期92-96,共5页
手写体数字识别技术是一种非常重要的技术,将带来巨大的社会效益和经济效益。但是到目前为止,对手写数字进行识别的准确率仍需要进一步提高。针对这种情况,本文提出了一种基于贝叶斯分类器的手写体数字分类识别方法,能够有效识别书写规... 手写体数字识别技术是一种非常重要的技术,将带来巨大的社会效益和经济效益。但是到目前为止,对手写数字进行识别的准确率仍需要进一步提高。针对这种情况,本文提出了一种基于贝叶斯分类器的手写体数字分类识别方法,能够有效识别书写规范的数字。 展开更多
关键词 图像处理 贝叶斯分类器 手写数字
下载PDF
基于PCA降维的MNIST手写数字识别优化
11
作者 田春婷 《现代信息科技》 2024年第16期64-68,共5页
PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类... PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类模型,以及选取不同分类算法作为基础分类器的集成学习方法,实现手写数字识别。在对MNIST数据集进行PCA降维前后,以及不同分类算法和模型执行结果的时间复杂度与预测准确率进行比对与分析,进一步强化与优化手写数字识别准确率等各项指标。 展开更多
关键词 PCA降维 MNIST手写数字识别 K-邻近算法 决策树 SVC分类模型 集成学习
下载PDF
Kernel principal component analysis network for image classification 被引量:5
12
作者 吴丹 伍家松 +3 位作者 曾瑞 姜龙玉 Lotfi Senhadji 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期469-473,共5页
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the d... In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation. 展开更多
关键词 deep learning kernel principal component analysis net(KPCANet) principal component analysis net(PCANet) face recognition object recognition handwritten digit recognition
下载PDF
手写体数字识别技术的研究 被引量:34
13
作者 柳回春 马树元 +1 位作者 吴平东 李晓梅 《计算机工程》 CAS CSCD 北大核心 2003年第4期24-25,61,共3页
手写体数字识别特征提取方面,有模板匹配,统计特征和结构特征,在分类器设计上有基于距离的分类器和神经网络分类器等。分析和评价了这些问题后,指出今后的研究方向应在特征综合、分类器集成以及新的分类器的研究上。
关键词 手写体数字识别 手写字符识别 信息处理 神经网络 特征提取 分类器 支持向量机
下载PDF
基于多分类器组合的手写体数字识别 被引量:35
14
作者 胡钟山 娄震 +2 位作者 杨静宇 刘克 孙靖夷 《计算机学报》 EI CSCD 北大核心 1999年第4期369-374,共6页
本文提出了一个基于多分类器组合的手写体数字识别方法.文中首先给出了一个客观评价分类器性能的参数,其后基于此参数提出了多分类器的组合方法,并从理论上研究了此方法的一些性质.本文实验采用Concordia大学模式识别与机器智能中... 本文提出了一个基于多分类器组合的手写体数字识别方法.文中首先给出了一个客观评价分类器性能的参数,其后基于此参数提出了多分类器的组合方法,并从理论上研究了此方法的一些性质.本文实验采用Concordia大学模式识别与机器智能中心的手写体数字数据库,在实验中,使用了9个利用不同特征分类器进行组合.组合后识别率、拒识率和可靠性分别可达到97.05%,2.05%,99.08%. 展开更多
关键词 手写体数字识别 多分类器组合 模式识别
下载PDF
UK心理测试自动分析系统的手写体数字识别 被引量:8
15
作者 柳回春 马树元 +3 位作者 吴平东 杨峰 曾兴生 毕路拯 《北京理工大学学报》 EI CAS CSCD 北大核心 2002年第5期599-603,共5页
针对 UK心理测试自动分析系统的手写体数字识别问题 ,提出了结构特征和统计特征相组合的三级分类方案 .经过印刷体去除、二值化、作业量判别等预处理之后 ,一级分类器提取点、线、圆等结构特征并进行组合构造相应模板 ,然后采用粗细两... 针对 UK心理测试自动分析系统的手写体数字识别问题 ,提出了结构特征和统计特征相组合的三级分类方案 .经过印刷体去除、二值化、作业量判别等预处理之后 ,一级分类器提取点、线、圆等结构特征并进行组合构造相应模板 ,然后采用粗细两阶段方案进行模板匹配 ;二级分类器提取区域模糊统计特征 ,构造了 10个一对多的SVM分类器 ;三级分类器提取投影特征、笔划特征、Fourier变换特征等 ,然后利用 RBF神经网络进行分类 .实验表明该方法合理有效 . 展开更多
关键词 UK心理测试自动分析系统 手写体数字识别 统计特征 结构特征 支持向量机 RBF神经网络
下载PDF
基于主曲线的脱机手写数字识别 被引量:14
16
作者 苗夺谦 张红云 +1 位作者 李道国 王真 《电子学报》 EI CAS CSCD 北大核心 2005年第9期1639-1643,共5页
该文提出了一种基于主曲线的脱机手写数字识别方法.该方法将主曲线及知识约简算法运用于识别模型中.主曲线是主成份分析的非线性推广,它是通过数据分布“中间”并满足“自相合”的光滑曲线.它较好地反映了数据分布的结构特征.粗糙集理... 该文提出了一种基于主曲线的脱机手写数字识别方法.该方法将主曲线及知识约简算法运用于识别模型中.主曲线是主成份分析的非线性推广,它是通过数据分布“中间”并满足“自相合”的光滑曲线.它较好地反映了数据分布的结构特征.粗糙集理论的知识约简是从决策表中获取决策(分类)规则的有效工具.本文将主曲线用于训练数据的特征提取,根据主曲线的特征生成决策表;利用我们提出的知识约简算法对决策表进行处理,自动获得分类规则.这种方法既符合人的识别习惯,又克服了利用统计特征识别所带来的不足.实验结果表明了该方法能有效提高手写数字的识别率,为脱机手写数字识别的研究提供了一条新途径. 展开更多
关键词 手写数字识别 主曲线 知识约简 分类规则
下载PDF
手写数字识别中组合式神经网络的构建方法 被引量:11
17
作者 何东晓 周春光 +2 位作者 刘淼 马捷 王喆 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1211-1216,共6页
将聚类技术和遗传算法相结合,提出一种基于相似度传播算法和遗传算法的神经网络集成方法应用于手写数字识别问题.先分别利用主成分分析和Fisher线性判别分析对数据集进行特征提取,得到两类特征数据集,再利用Bagging方法分别为这两类特... 将聚类技术和遗传算法相结合,提出一种基于相似度传播算法和遗传算法的神经网络集成方法应用于手写数字识别问题.先分别利用主成分分析和Fisher线性判别分析对数据集进行特征提取,得到两类特征数据集,再利用Bagging方法分别为这两类特征数据集训练简单的BP神经网络,然后采用相似度传播算法对这些BP神经网络进行聚类,找到作为类簇中心的网络(中心网络),最后利用遗传算法对所有中心网络的权值进行训练,将中心网络进行加权线性集成作为最终分类器.在标准手写数字数据集MNIST上进行测试的实验结果表明,该方法的识别率优于单个神经网络的识别率,并兼顾了分类效率. 展开更多
关键词 人工神经网络 手写数字识别 神经网络集成
下载PDF
基于局部特征的卷积神经网络模型 被引量:13
18
作者 施恩 李骞 +1 位作者 顾大权 赵章明 《计算机工程》 CAS CSCD 北大核心 2018年第2期282-286,共5页
传统卷积神经网络对于特征不明显或歧义性大的图像识别率较低。针对该问题,在卷积神经网络的基础上通过增加局部特征提取层和概率权重综合层,构建基于局部特征的卷积神经网络模型。该模型对输入图像的局部进行识别,得到局部图像的分类... 传统卷积神经网络对于特征不明显或歧义性大的图像识别率较低。针对该问题,在卷积神经网络的基础上通过增加局部特征提取层和概率权重综合层,构建基于局部特征的卷积神经网络模型。该模型对输入图像的局部进行识别,得到局部图像的分类概率信息,综合分析所有局部图像的分类概率信息得到最终网络输出。手写字符识别实验结果表明,与经典的卷积神经网络模型相比,该模型识别率较高,尤其是在输入图像特征较为模糊的情况下优势更为明显。 展开更多
关键词 深度学习 卷积神经网络 局部特征 手写数字识别 分类概率
下载PDF
手写体数字有效鉴别特征的抽取与识别 被引量:10
19
作者 金忠 胡钟山 +2 位作者 杨静宇 刘克 孙靖夷 《计算机研究与发展》 EI CSCD 北大核心 1999年第12期1484-1489,共6页
文中提出了基于后验概率估计的多特征多分类器组合识别的估计法,并提出了基于具有统计不相关性的最佳鉴别变换与KL变换抽取手写体数字的有效鉴别特征的方法.实验采用Concordia University CENPARMI手写... 文中提出了基于后验概率估计的多特征多分类器组合识别的估计法,并提出了基于具有统计不相关性的最佳鉴别变换与KL变换抽取手写体数字的有效鉴别特征的方法.实验采用Concordia University CENPARMI手写体数字数据库.用最近邻距离分类器与最近邻相关分类器这两个分类器,对手写体数字的12 个特征做多特征多分类器组合识别实验. 实验结果表明:估计法优于常用的投票法与计分法,估计法的识别率高达97% .本文最后基于一个严格的结构分类器与估计法提出了一个集成分类器,该集成分类器获得了更好的实验结果:识别率、拒识率与可靠性分别可达到97.15% 、2.05% 、99.18% ,这是目前在该手写体数字数据库上所得到的最好的实验结果. 展开更多
关键词 计算机 手写体数字识别 特征抽取 模式识别
下载PDF
基于自组织映射的手写数字识别的并行实现 被引量:9
20
作者 王一木 潘赟 +2 位作者 龙彦辰 严晓浪 宦若虹 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第4期742-747,共6页
针对自组织映射(SOM)神经网络算法实现复杂的问题,提出SOM算法的简化方案及并行硬件电路架构.经典SOM算法中,权值更新函数须使用浮点数乘法、开方以及指数等运算,硬件并行实现十分困难.传统的SOM简化方法的聚类准确率不高,面对手写数字... 针对自组织映射(SOM)神经网络算法实现复杂的问题,提出SOM算法的简化方案及并行硬件电路架构.经典SOM算法中,权值更新函数须使用浮点数乘法、开方以及指数等运算,硬件并行实现十分困难.传统的SOM简化方法的聚类准确率不高,面对手写数字识别这类复杂应用,传统方法的识别率十分有限.提出的SOM简化算法可以在保证系统聚类准确率的同时,除去权值更新函数中的复杂运算,易于硬件的全并行实现.基于提出的SOM简化算法及并行电路架构,实现的手写数字识别系统的工作频率为50 MHz,单次输入的学习时间仅需200ns,实时处理性能可达400MCUPS.识别系统针对MNIST样本库的识别准确率超过81%,与经典SOM算法的准确率持平,明显优于其他SOM简化方法. 展开更多
关键词 自组织映射(SOM) 手写数字识别 并行实现 现场可编程门阵列(FPGA)
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部