期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Part-based methods for handwritten digit recognition 被引量:4
1
作者 Song WANG Seiichi UCHIDA +1 位作者 Marcus LIWICKI Yaokai FENG 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期514-525,共12页
In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and rec... In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and recognize the image by aggregating the recognition results of individual parts. Since part-based methods do not rely on the global structure of a character, they are expected to be more robust against various delormations which may damage the global structure. The proposed three methods are based on the same principle but different in their details, for example, the way of aggregating the individual results. Thus, those methods have different performances. Experimental results show that even the simplest part-based method can achieve recognition rate as high as 98.42% while the improved one achieved 99.15%, which is comparable or even higher than some state-of-the-art method. This result is important because it reveals that characters can be recognized without their global structure. The results also show that the part-based method has robustness against deformations which usually appear in handwriting. 展开更多
关键词 handwritten digit recognition local features part-based method
原文传递
基于局部特征的卷积神经网络模型 被引量:13
2
作者 施恩 李骞 +1 位作者 顾大权 赵章明 《计算机工程》 CAS CSCD 北大核心 2018年第2期282-286,共5页
传统卷积神经网络对于特征不明显或歧义性大的图像识别率较低。针对该问题,在卷积神经网络的基础上通过增加局部特征提取层和概率权重综合层,构建基于局部特征的卷积神经网络模型。该模型对输入图像的局部进行识别,得到局部图像的分类... 传统卷积神经网络对于特征不明显或歧义性大的图像识别率较低。针对该问题,在卷积神经网络的基础上通过增加局部特征提取层和概率权重综合层,构建基于局部特征的卷积神经网络模型。该模型对输入图像的局部进行识别,得到局部图像的分类概率信息,综合分析所有局部图像的分类概率信息得到最终网络输出。手写字符识别实验结果表明,与经典的卷积神经网络模型相比,该模型识别率较高,尤其是在输入图像特征较为模糊的情况下优势更为明显。 展开更多
关键词 深度学习 卷积神经网络 局部特征 手写数字识别 分类概率
下载PDF
基于CNN的多尺度特征在手写数字识别中的应用 被引量:4
3
作者 仲会娟 谢朝和 +1 位作者 刘文武 刘大茂 《绵阳师范学院学报》 2019年第11期22-26,共5页
在手写数字识别数据集(MNIST)情景下,为了提高卷积神经网络的识别正确率,提出了一种改进的基于卷积神经网络(CNN)的多尺度特征识别算法.首先,利用卷积操作和池化操作提取图像中的全局特征及局部特征,通过二次卷积与特征融合获得数字图... 在手写数字识别数据集(MNIST)情景下,为了提高卷积神经网络的识别正确率,提出了一种改进的基于卷积神经网络(CNN)的多尺度特征识别算法.首先,利用卷积操作和池化操作提取图像中的全局特征及局部特征,通过二次卷积与特征融合获得数字图像的多尺度特征.然后,将多尺度特征送入全连接网络和SoftMax分类器,实现手写数字图像识别.最后,通过对不同网络结构的CNN算法进行评估表明,本文提出的算法可以有效提高网络精度,具有较好的泛化能力. 展开更多
关键词 卷积神经网络 多尺度特征 手写数字识别数据集 全局特征 局部特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部