The influence of ultrasonic degassing process on fluidity and hardness of secondary Al7Si0.3Mg alloy castings was studied by Weibull analysis. This work makes a contribution about fluidity and hardness distribution of...The influence of ultrasonic degassing process on fluidity and hardness of secondary Al7Si0.3Mg alloy castings was studied by Weibull analysis. This work makes a contribution about fluidity and hardness distribution of secondary aluminum alloys with ultrasonic degassing phenomena using a two-parameter form of Weibull analysis. Results show that both hardness and fluidity of alloy are improved after the ultrasonic degassing process. Average efficiency of ultrasonic degassing on fluidity measurements is 31.71%, whereas on hardness values is 8.48%. The Brinell hardness of 45.7 and fluidity of 19.5 of Weibull modulus were achieved as the most reliable and reproducible after 45 s ultrasonic degassing process against 15 s and 30 s ultrasonic degassing processes. The value of 70.08 HB is obtained from ultrosonic degassing, which is equivalent to sand casting of primary Al7Si0.3Mg aluminum alloy, and the highest value of 56.4 cm for 45 s after ultrasonic degassing of fluidity was measured.展开更多
The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was address...The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.展开更多
Models have been derived for assessment and computational analysis of the hardness of the heat affected zone (HAZ) in aluminum weldment. The general model;γ = 1.2714[(αβ/α + β)] was found to predict the HAZ hardn...Models have been derived for assessment and computational analysis of the hardness of the heat affected zone (HAZ) in aluminum weldment. The general model;γ = 1.2714[(αβ/α + β)] was found to predict the HAZ hardness of aluminum weldment cooled in water as a function of the HAZ hardness of both mild steel and cast iron welded and cooled under the same conditions. The maximum deviations of the model-predicted HAZ hardness values γ, α and β from the corresponding experimental values γexp, αexp and βexp were less than 0.02% respectively.展开更多
Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly a...Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly aluminum alloys. MPO is a multifactor-controlled process, these factors must be controlled to produce high quality coatings. The main research emphasis in MPO coating development over the past years seems to be the attainment of higher hardness levels and thick coatings. The porosity of MPO coating is the most complex phenomenon affecting the distribution, levels and the measurements of the hardness; and it is controlled by suitable selection of important parameters such as the electrical conditions. Ceramics coatings were synthesized on Al substrate by MPO to examine the effects of adding a cathodic phase alternated with anodic-cathodic current on the porosity and hardness characteristics of coatings by X-ray diffraction(XRD), scanning electron microscopy(SEM), and microhardness tester. The coatings produced by the combined mode are more dense and less porous than that by the anodic-cathodic mode. (Microhardness) test shows that the coatings produced by the combined mode exhibit both the highest hardness, and less reduction percentage in hardness with increasing the coatings thickness. These improvements become more significant for the polished and thicker coatings.展开更多
The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general mode...The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.展开更多
The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn al...The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was directionally solidified at a constant temperature gradient(G=8.1 K·mm^(-1)) with different growth rates, 8.4 to 166.2 μm·s^(-1),by using a Bridgman-type furnace. The eutectic temperature(the melting point) of 547.85 °C for the Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was obtained from the DTA curve of the temperature difference between the test sample and the inert reference sample versus temperature or time. The lamellar spacings(λ) were measured from transverse sections of the samples. The dependencies of lamellar spacings(λAl-Al2 Cu) and microhardness on growth rates were obtained as, λ_(Al-Al2Cu)=3.02 V^(-0.36), HV=153.2(V)^(0.035), HV=170.6(λ)^(-0.09) and HV=144.3+0.82(λ_(AlAl2 Cu))^(-0.50), HV=149.9+53.48 V^(0.25), respectively, for the Al-Cu-Mn eutectic alloy. The bulk growth rates were determined as λ~2_(Al-Al2 Cu)·V = 25.38 μm^3·s^(-1) by using the measured values of λ_(Al-Al2 Cu) and V. A comparison of present results was also made with the previous similar experimental results.展开更多
High volume fraction SiCp/Al aluminum matrix composite possesses a variety of outstanding properties,such as high thermal conductivity and low coefficient of thermal expansion.It is widely applied in many fields,espec...High volume fraction SiCp/Al aluminum matrix composite possesses a variety of outstanding properties,such as high thermal conductivity and low coefficient of thermal expansion.It is widely applied in many fields,especially in automotive and aerospace.An orthogonal experiment is conducted to study the effects of relevant parameters on the mechanical properties by CO2 laser.Then the micro-hardness in different regions is measured.The effects of such parameters as laser power,middle layer thickness and welding speed on the tensile strength of the welded joints are discussed.The experimental results indicate that the maximum of the tensile strength of the welded joints is attained at the laser power of 1 200 W,the welding speed of 1.5 m/min and the middle layer thickness of 0.3 mm.In addition,the mechanism of the improvement of micro-hardness on the weld bead is also analyzed.ing technology, surface tribology, wetting behavior and friction reduction.展开更多
文摘The influence of ultrasonic degassing process on fluidity and hardness of secondary Al7Si0.3Mg alloy castings was studied by Weibull analysis. This work makes a contribution about fluidity and hardness distribution of secondary aluminum alloys with ultrasonic degassing phenomena using a two-parameter form of Weibull analysis. Results show that both hardness and fluidity of alloy are improved after the ultrasonic degassing process. Average efficiency of ultrasonic degassing on fluidity measurements is 31.71%, whereas on hardness values is 8.48%. The Brinell hardness of 45.7 and fluidity of 19.5 of Weibull modulus were achieved as the most reliable and reproducible after 45 s ultrasonic degassing process against 15 s and 30 s ultrasonic degassing processes. The value of 70.08 HB is obtained from ultrosonic degassing, which is equivalent to sand casting of primary Al7Si0.3Mg aluminum alloy, and the highest value of 56.4 cm for 45 s after ultrasonic degassing of fluidity was measured.
文摘The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.
文摘Models have been derived for assessment and computational analysis of the hardness of the heat affected zone (HAZ) in aluminum weldment. The general model;γ = 1.2714[(αβ/α + β)] was found to predict the HAZ hardness of aluminum weldment cooled in water as a function of the HAZ hardness of both mild steel and cast iron welded and cooled under the same conditions. The maximum deviations of the model-predicted HAZ hardness values γ, α and β from the corresponding experimental values γexp, αexp and βexp were less than 0.02% respectively.
文摘Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly aluminum alloys. MPO is a multifactor-controlled process, these factors must be controlled to produce high quality coatings. The main research emphasis in MPO coating development over the past years seems to be the attainment of higher hardness levels and thick coatings. The porosity of MPO coating is the most complex phenomenon affecting the distribution, levels and the measurements of the hardness; and it is controlled by suitable selection of important parameters such as the electrical conditions. Ceramics coatings were synthesized on Al substrate by MPO to examine the effects of adding a cathodic phase alternated with anodic-cathodic current on the porosity and hardness characteristics of coatings by X-ray diffraction(XRD), scanning electron microscopy(SEM), and microhardness tester. The coatings produced by the combined mode are more dense and less porous than that by the anodic-cathodic mode. (Microhardness) test shows that the coatings produced by the combined mode exhibit both the highest hardness, and less reduction percentage in hardness with increasing the coatings thickness. These improvements become more significant for the polished and thicker coatings.
文摘The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.
文摘The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was directionally solidified at a constant temperature gradient(G=8.1 K·mm^(-1)) with different growth rates, 8.4 to 166.2 μm·s^(-1),by using a Bridgman-type furnace. The eutectic temperature(the melting point) of 547.85 °C for the Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was obtained from the DTA curve of the temperature difference between the test sample and the inert reference sample versus temperature or time. The lamellar spacings(λ) were measured from transverse sections of the samples. The dependencies of lamellar spacings(λAl-Al2 Cu) and microhardness on growth rates were obtained as, λ_(Al-Al2Cu)=3.02 V^(-0.36), HV=153.2(V)^(0.035), HV=170.6(λ)^(-0.09) and HV=144.3+0.82(λ_(AlAl2 Cu))^(-0.50), HV=149.9+53.48 V^(0.25), respectively, for the Al-Cu-Mn eutectic alloy. The bulk growth rates were determined as λ~2_(Al-Al2 Cu)·V = 25.38 μm^3·s^(-1) by using the measured values of λ_(Al-Al2 Cu) and V. A comparison of present results was also made with the previous similar experimental results.
基金supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2014ZX04012014)the National Natural Science Foundation of China(No.51505219)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20150748)the National Postdoctoral Foundation of China(No.2018T110493)
文摘High volume fraction SiCp/Al aluminum matrix composite possesses a variety of outstanding properties,such as high thermal conductivity and low coefficient of thermal expansion.It is widely applied in many fields,especially in automotive and aerospace.An orthogonal experiment is conducted to study the effects of relevant parameters on the mechanical properties by CO2 laser.Then the micro-hardness in different regions is measured.The effects of such parameters as laser power,middle layer thickness and welding speed on the tensile strength of the welded joints are discussed.The experimental results indicate that the maximum of the tensile strength of the welded joints is attained at the laser power of 1 200 W,the welding speed of 1.5 m/min and the middle layer thickness of 0.3 mm.In addition,the mechanism of the improvement of micro-hardness on the weld bead is also analyzed.ing technology, surface tribology, wetting behavior and friction reduction.