The variations of electrical conductivity and hardness across the thickness of an Al alloy 7010 plate under the temper condition T7651 were investigated. The electrical conductivity and hardness respond in a reciproca...The variations of electrical conductivity and hardness across the thickness of an Al alloy 7010 plate under the temper condition T7651 were investigated. The electrical conductivity and hardness respond in a reciprocal manner. Cross-sectional slices of the plate subjected to re-solutionising/natural ageing and re-solutionising/artificial ageing show the similar tendencies in property changes as in the as-received raw material. This clearly suggests that the property inhomogeneity across the plate thickness is inherent of the manufacturing route. The differences in properties through the plate thickness are due to the changes in the concentrations of the strengthening alloying elements in the solid solution and the associated changes in microstructure; these are believed to be mainly due to the nature of plate solidification and prolonged high temperature during the rolling operation. The combination of electrical conductivity and hardness can be used as an integral quality property indicator for assessing inhomogeneity of thick products.展开更多
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est...The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.展开更多
Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The ...Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The influence of coating thickness of soft magnetic layers on the structure and magnetic properties of the composite has been studied. Overall FeNi coating was found to be less dense compared to FeCo for the same plating duration. Structurally the coat ing was found to be nodular in morphology. These coating have dramatic effect on the overall magnetic property of the composite. As compared to FeNi coated SmCo5 composite, two-fold increase in the saturation magnetization has been observed upon coating SmCo5 (Ms^28 emu/g) with FeCo to a value 56 emu/g. The coercivity of composite powder was found to decrease with increasing the coating layer thickness. The absence of exchange spring behavior in the hard-soft composite is attributed to magnetically soft layer thickness exceeding the theoretical length limit for exchange-spring coupling.展开更多
Thermal fatigue behavior of hard chromium electroplated steel in three different crack intensities of high contraction(HC), medium contraction (MC) and low contraction (LC) was studied. Maximum and minimum temperature...Thermal fatigue behavior of hard chromium electroplated steel in three different crack intensities of high contraction(HC), medium contraction (MC) and low contraction (LC) was studied. Maximum and minimum temperaturesduring thermal cycle were 800 and 100℃, respectively. The topography and cross sections of the samples exposedto 50, 100 and 200 thermal cycles were studied. The thermal fatigue behavior was analyzed using the data obtainedfrom surface roughness, crack networks and stress induced during cycles. Although the as-coated sample with LCchromium contained no crack, it appeared to have a high crack density after only 50 cycles. The crack depth andwidth in cyclically oxidized LC coating were much less than those in MC and HC coatings. It was concluded that theLC coating protected the substrate from having cracks or subsurface oxidation during thermal fatigue. The cracksin the HC and MC coatings increased in density as well as in depth by thermal cycles. Moreover, the opening of thecracks to the substrate resulted in sub-surface oxidation.展开更多
Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The ex...Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti, M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.展开更多
The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thicknes...The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.展开更多
文摘The variations of electrical conductivity and hardness across the thickness of an Al alloy 7010 plate under the temper condition T7651 were investigated. The electrical conductivity and hardness respond in a reciprocal manner. Cross-sectional slices of the plate subjected to re-solutionising/natural ageing and re-solutionising/artificial ageing show the similar tendencies in property changes as in the as-received raw material. This clearly suggests that the property inhomogeneity across the plate thickness is inherent of the manufacturing route. The differences in properties through the plate thickness are due to the changes in the concentrations of the strengthening alloying elements in the solid solution and the associated changes in microstructure; these are believed to be mainly due to the nature of plate solidification and prolonged high temperature during the rolling operation. The combination of electrical conductivity and hardness can be used as an integral quality property indicator for assessing inhomogeneity of thick products.
基金provided by the National Natural Science Foundation of China (No. 41071273)
文摘The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.
文摘Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The influence of coating thickness of soft magnetic layers on the structure and magnetic properties of the composite has been studied. Overall FeNi coating was found to be less dense compared to FeCo for the same plating duration. Structurally the coat ing was found to be nodular in morphology. These coating have dramatic effect on the overall magnetic property of the composite. As compared to FeNi coated SmCo5 composite, two-fold increase in the saturation magnetization has been observed upon coating SmCo5 (Ms^28 emu/g) with FeCo to a value 56 emu/g. The coercivity of composite powder was found to decrease with increasing the coating layer thickness. The absence of exchange spring behavior in the hard-soft composite is attributed to magnetically soft layer thickness exceeding the theoretical length limit for exchange-spring coupling.
文摘Thermal fatigue behavior of hard chromium electroplated steel in three different crack intensities of high contraction(HC), medium contraction (MC) and low contraction (LC) was studied. Maximum and minimum temperaturesduring thermal cycle were 800 and 100℃, respectively. The topography and cross sections of the samples exposedto 50, 100 and 200 thermal cycles were studied. The thermal fatigue behavior was analyzed using the data obtainedfrom surface roughness, crack networks and stress induced during cycles. Although the as-coated sample with LCchromium contained no crack, it appeared to have a high crack density after only 50 cycles. The crack depth andwidth in cyclically oxidized LC coating were much less than those in MC and HC coatings. It was concluded that theLC coating protected the substrate from having cracks or subsurface oxidation during thermal fatigue. The cracksin the HC and MC coatings increased in density as well as in depth by thermal cycles. Moreover, the opening of thecracks to the substrate resulted in sub-surface oxidation.
文摘Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti, M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.
文摘The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.