A modified plastic strain energy as hardening state parameter for dense sand was proposed, based on the results front a series of drained plane strain tests on saturated dense Japanese Toyoura sand with precise stress...A modified plastic strain energy as hardening state parameter for dense sand was proposed, based on the results front a series of drained plane strain tests on saturated dense Japanese Toyoura sand with precise stress and strain measurements along many stress paths. In addition, a unique hardening function between the plastic strain energy and the instantaneous stress path was also presented, which was independent of stress history. The proposed state parameter and hardening function was directly verified by the simple numerical integration method. It is shown that the proposed hardening function is independent of stress history and stress path and is appropriate to be used as the hardening rule in constitutive modeling for dense sand, and it is also capable of simulating the effects on the de-formation characteristics of stress history and stress path for dense sand.展开更多
A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement i...A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.展开更多
Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was present...Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength.展开更多
The forming limit diagram(FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is timecon...The forming limit diagram(FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is timeconsuming and therefore the analytical prediction based on theory of plasticity and instability criteria allows a direct and efficient methodology to obtain critical values at different loading paths, thus carrying significant practical importance.However, the accuracy of the plastic instability prediction is strongly dependent on the choice of the material constitutive model [1–3]. Particularly for materials with hexagonal close packed(HCP) crystallographic structure, they have a very limited number of active slip systems at room temperature and demonstrate a strong asymmetry between yielding in tension and compression [4, 5]. Not only the magnitude of the yield locus changes, but also the shape of the yield surface is evolving during the plastic deformation [4]. Conventional phenomenological constitutive models of plasticity fail to capture this unconventional mechanical behavior [4, 6]. Cazacu and Plunkett [6] have proposed generic yield criteria, by using the transformed principal stress, to account for the initial plastic anisotropy and strength differential(SD) effect simultaneously. In this contribution, a generic FLD MATLAB script was developed based on Marciniak–Kuczynski analytical theory and applied to predict the localized necking. The influence of asymmetrical effect on the FLD was evaluated. Several yield functions such as von Mises, Hill, Barlat89, and Cazacu06 were incorporated into analysis. The paper also presents and discusses the influence of different hardening laws on the formability of materials with HCP crystal structures. The findings indicate that the plastic instability theory coupled with Cazacu model can adequately predict the onset of localized necking for HCP materials under different strain paths.展开更多
文摘A modified plastic strain energy as hardening state parameter for dense sand was proposed, based on the results front a series of drained plane strain tests on saturated dense Japanese Toyoura sand with precise stress and strain measurements along many stress paths. In addition, a unique hardening function between the plastic strain energy and the instantaneous stress path was also presented, which was independent of stress history. The proposed state parameter and hardening function was directly verified by the simple numerical integration method. It is shown that the proposed hardening function is independent of stress history and stress path and is appropriate to be used as the hardening rule in constitutive modeling for dense sand, and it is also capable of simulating the effects on the de-formation characteristics of stress history and stress path for dense sand.
基金supported by the Fulbright Colombia-Colciencias Scholarship and Universidad Militar Nueva Granada
文摘A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.
文摘Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength.
基金support from the Portuguese Foundation for Science and Technology (FCT) via the projects PTDC/EMS-TEC/2404/2012, and PTDC/EMS-TEC/1805/2012FEDER funds through the program COMPETE-‘‘Programa Operacional Factores de Competitividade’’ is greatly acknowledged
文摘The forming limit diagram(FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is timeconsuming and therefore the analytical prediction based on theory of plasticity and instability criteria allows a direct and efficient methodology to obtain critical values at different loading paths, thus carrying significant practical importance.However, the accuracy of the plastic instability prediction is strongly dependent on the choice of the material constitutive model [1–3]. Particularly for materials with hexagonal close packed(HCP) crystallographic structure, they have a very limited number of active slip systems at room temperature and demonstrate a strong asymmetry between yielding in tension and compression [4, 5]. Not only the magnitude of the yield locus changes, but also the shape of the yield surface is evolving during the plastic deformation [4]. Conventional phenomenological constitutive models of plasticity fail to capture this unconventional mechanical behavior [4, 6]. Cazacu and Plunkett [6] have proposed generic yield criteria, by using the transformed principal stress, to account for the initial plastic anisotropy and strength differential(SD) effect simultaneously. In this contribution, a generic FLD MATLAB script was developed based on Marciniak–Kuczynski analytical theory and applied to predict the localized necking. The influence of asymmetrical effect on the FLD was evaluated. Several yield functions such as von Mises, Hill, Barlat89, and Cazacu06 were incorporated into analysis. The paper also presents and discusses the influence of different hardening laws on the formability of materials with HCP crystal structures. The findings indicate that the plastic instability theory coupled with Cazacu model can adequately predict the onset of localized necking for HCP materials under different strain paths.