The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately pr...The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures.The issue stems from the pressure independent hardening law in the classical deviatoric hardening model.To overcome this problem,we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations.Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands.Furthermore,to examine the importance of the improved deviatoric hardening model,it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures.It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy...In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.展开更多
Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microsc...Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microscopy,scanning electron microscopy,electron back scattered diffraction and transmission electron microscopy.The experimental results show that Mg-1Zn alloy exhibits conventional three-stage strain hardening curves,while Mg-1Y alloy exhibits novel six-stage strain hardening curves.For Mg-1Y alloy,rare earth texture leads to weak tensile twinning activity in compression and consequently results in a moderate evolution to<0001>texture.Moreover,inefficient tensile twinning activity and weak slip-twinning interaction give rise to excellent ductility and high hardening capacity but low strain hardening rate.For Mg-1Zn alloy,basal texture leads to pronounced tensile twinning activity in compression and consequently results in rapid evolution to<0001>texture.The intense tensile twinning activity and strong slip-twinning interaction lead to high strain hardening rate but poor ductility and low hardening capacity.展开更多
In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir cas...In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir casting method. The microstructure characterization of the samples showed the wide distributions of Mg_(7)Zn_(3) and Gd(Mg_(0.5)Zn_(0.5)) precipitates were formed during casting. The results of hardness measurement after precipitation hardening at different temperatures showed that the hardness peck was obtained at 175 ℃. The wear tests with different loads(10, 40, 60, 90, and 120 N) and velocities(0.1, 0.3, 0.6, and 0.9 m/s) were performed on the as-cast and heat treated sample at 125, 175, and 225 for 12 h. Between the different precipitation hardening conditions, the precipitation hardened samples at 175 ℃ had the highest hardness values and least wear rate. The sample containing 10% reinforcement had the least wear rate between the unreinforced alloy and the composites. The results showed that abrasive, adhesive, delamination, MML, and fatigue wear mechanisms were the dominant wear mechanisms for the composite samples. In contrast, the dominant wear mechanism for the unreinforced samples was abrasive, adhesive,delamination, MML, and plastic deformation.展开更多
The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but ...The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.展开更多
The mechanical properties of magnesium alloy AZ31 were investigated experimentally with visco-plastic self-consistent modeling. Tension,compression and plane strain compression(PSC) tests were performed along 3 direct...The mechanical properties of magnesium alloy AZ31 were investigated experimentally with visco-plastic self-consistent modeling. Tension,compression and plane strain compression(PSC) tests were performed along 3 directions of a hot rolled plate, and the material parameters input in the model were fitted with the uniaxial stress-strain curves. The critical resolved shear stress(CRSS) for tension twinning was modeled with a modified Voce hardening law first decreasing, and then increasing with strain, that could reproduce better the flow stress for twin-predominant deformation. Such CRSS evolution may better model twin nucleation, propagation and growth. Firstly simulations were carried out assuming latent hardening coefficients for slip by other slip systems equal to self-hardening. Then different heterogeneous latent hardening were used, whose values were based on dislocation dynamics simulations from the literature. This study shows that equal self and latent hardening can reproduce the stress strain curves and plastic anisotropy as well as heterogeneous mode on mode latent hardening.Discrepancies between simulations and experimental results from PSC are explained by an under-estimation of twinning for some PSC strain paths.展开更多
In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of thei...In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.展开更多
基金the funding support from Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China(Grant No.51988101).
文摘The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures.The issue stems from the pressure independent hardening law in the classical deviatoric hardening model.To overcome this problem,we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations.Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands.Furthermore,to examine the importance of the improved deviatoric hardening model,it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures.It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金financially supported by the Key R&D program of Shanxi Province (International Cooperation) (No.201903D421036)the Natural Science Foundation of Shanxi Province (No.201901D111176)+5 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No.U20A20230)the Bureau of Science,Technology and Industry for National Defense of China (No.WDZC2019JJ006)the National Natural Science Foundation of China (Grant No.52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.201802072)the National Defense Basic Scientific Research Program (No.JCKY2018408B003)the XX Supporting Scientific Research Project (No.xxxx-2019-021)。
文摘In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.
基金Funded by the Beijing Municipal Natural Science Foundation (No.2202004)the National Natural Science Foundation of China (No.51801048)the Basic Research Fund for Newly Enrolled Teachers and the Fund for Distinguished Young Scholars of China Academy of Space Technology。
文摘Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microscopy,scanning electron microscopy,electron back scattered diffraction and transmission electron microscopy.The experimental results show that Mg-1Zn alloy exhibits conventional three-stage strain hardening curves,while Mg-1Y alloy exhibits novel six-stage strain hardening curves.For Mg-1Y alloy,rare earth texture leads to weak tensile twinning activity in compression and consequently results in a moderate evolution to<0001>texture.Moreover,inefficient tensile twinning activity and weak slip-twinning interaction give rise to excellent ductility and high hardening capacity but low strain hardening rate.For Mg-1Zn alloy,basal texture leads to pronounced tensile twinning activity in compression and consequently results in rapid evolution to<0001>texture.The intense tensile twinning activity and strong slip-twinning interaction lead to high strain hardening rate but poor ductility and low hardening capacity.
文摘In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir casting method. The microstructure characterization of the samples showed the wide distributions of Mg_(7)Zn_(3) and Gd(Mg_(0.5)Zn_(0.5)) precipitates were formed during casting. The results of hardness measurement after precipitation hardening at different temperatures showed that the hardness peck was obtained at 175 ℃. The wear tests with different loads(10, 40, 60, 90, and 120 N) and velocities(0.1, 0.3, 0.6, and 0.9 m/s) were performed on the as-cast and heat treated sample at 125, 175, and 225 for 12 h. Between the different precipitation hardening conditions, the precipitation hardened samples at 175 ℃ had the highest hardness values and least wear rate. The sample containing 10% reinforcement had the least wear rate between the unreinforced alloy and the composites. The results showed that abrasive, adhesive, delamination, MML, and fatigue wear mechanisms were the dominant wear mechanisms for the composite samples. In contrast, the dominant wear mechanism for the unreinforced samples was abrasive, adhesive,delamination, MML, and plastic deformation.
基金financial support from National Natural Science Foundation of China (12072211)Sichuan Province Science and Technology Project (2020JDJQ0029)。
文摘The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.
基金National Natural Science Foundation of China (51871032, 52071039 and 51671040)the 111 Project (B16007) of the Ministry of Education。
文摘The mechanical properties of magnesium alloy AZ31 were investigated experimentally with visco-plastic self-consistent modeling. Tension,compression and plane strain compression(PSC) tests were performed along 3 directions of a hot rolled plate, and the material parameters input in the model were fitted with the uniaxial stress-strain curves. The critical resolved shear stress(CRSS) for tension twinning was modeled with a modified Voce hardening law first decreasing, and then increasing with strain, that could reproduce better the flow stress for twin-predominant deformation. Such CRSS evolution may better model twin nucleation, propagation and growth. Firstly simulations were carried out assuming latent hardening coefficients for slip by other slip systems equal to self-hardening. Then different heterogeneous latent hardening were used, whose values were based on dislocation dynamics simulations from the literature. This study shows that equal self and latent hardening can reproduce the stress strain curves and plastic anisotropy as well as heterogeneous mode on mode latent hardening.Discrepancies between simulations and experimental results from PSC are explained by an under-estimation of twinning for some PSC strain paths.
文摘In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.