This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
Assessment of railway wheel slide protection(WSP) systems involves the execution of complex experimental activities that are quite expensive and time-consuming, since they involve the physical reproduction of degraded...Assessment of railway wheel slide protection(WSP) systems involves the execution of complex experimental activities that are quite expensive and time-consuming, since they involve the physical reproduction of degraded adhesion conditions on a real railway line. WSP is devoted to regulating applied braking forces to avoid excessive wheel sliding in case of degraded adhesion conditions between wheel and rail. WSP must be also compliant to safety specifications related to assured braking performances and consumed air. Hardware in the loop(HIL) testing offers an affordable and sustainable way to accelerate these activities optimizing cost, duration and safety of experimental activities performed online. HIL test rigs are subjected to continuous updates, customization and natural ageing of their components. This work investigates the criteria that can be adopted to assure a continuous monitoring and validation of a real WSP test rig, the Italian test rig of Firenze Osmannoro.展开更多
With the iterative development of autonomous driving technology,selfdriving cars will be one of the most competitive areas in the future.In order to provide students with a better understanding and more comprehensive ...With the iterative development of autonomous driving technology,selfdriving cars will be one of the most competitive areas in the future.In order to provide students with a better understanding and more comprehensive grasp of autonomous driving technology,a hardware-in-the-loop based autonomous driving simulation test platform has been built.The hardware-in-the-loop system integrates MATLAB/Simulink to build the core control algorithm model,CarMaker simulation software to provide a virtual display interface and vehicle dynamics model,and NVIDIA Jetson to deploy the ECU(Electronic Control Unit)to improve the algorithm power and Logitech G29 series driving simulators providing signal input.It provides a simulation test platform for the development and testing of advanced driver assistance systems,the development and testing of upper layer control algorithms and underlying actuators for autonomous driving,and can provide a teaching and experimental platform for undergraduate students and a development foundation for postgraduate practice.展开更多
This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore win...This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.展开更多
There is increasing interest in the evaluation of wind turbine control capabilities for providing grid support.Power hardware in the loop(PHIL)simulation is an advanced method that can be used for studying the interac...There is increasing interest in the evaluation of wind turbine control capabilities for providing grid support.Power hardware in the loop(PHIL)simulation is an advanced method that can be used for studying the interaction of hardware with the power network,as the scaled-down actual wind turbine is connected with a simulated system through an amplifier.Special consideration must be made in the design of the PHIL platform to ensure that the system is stable and yields accurate results.This paper presents a method for stabilizing the PHIL interface and improving the accuracy of PHIL simulation in a real-time application.The method factors in both the power and voltage scaling level,and a phase compensation scheme.It uses the reactive power control capability of the wind turbine inverter to eliminate the phase shift imposed by the feedback current filter.This is accomplished with no negative impact on the dynamic behavior of the wind turbine.The PHIL simulation results demonstrate the effectiveness of the proposed stability analysis method and phase compensation scheme.The strength of the platform is demonstrated by extending the simulation method to wind turbine control validation.展开更多
The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the opera...The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.展开更多
This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating di...This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.展开更多
Integration of distributed generation(DG)can change the fault current level and direction in the distribution system,which affects the related protection system.In order to limit the negative impact of DG integration ...Integration of distributed generation(DG)can change the fault current level and direction in the distribution system,which affects the related protection system.In order to limit the negative impact of DG integration and upgrade the protection system performance,an intelligent coordinated protection and control strategy is proposed.A cost based optimization method is adopted to minimize the operation costs of possible solutions.Its aim is to define the optimal relay settings for the present operation condition,and the most suitable control mode of converter based wind turbine DG.Case studies on a hardware in the loop real time simulation platform demonstrate the proposed protection strategy.展开更多
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.
文摘Assessment of railway wheel slide protection(WSP) systems involves the execution of complex experimental activities that are quite expensive and time-consuming, since they involve the physical reproduction of degraded adhesion conditions on a real railway line. WSP is devoted to regulating applied braking forces to avoid excessive wheel sliding in case of degraded adhesion conditions between wheel and rail. WSP must be also compliant to safety specifications related to assured braking performances and consumed air. Hardware in the loop(HIL) testing offers an affordable and sustainable way to accelerate these activities optimizing cost, duration and safety of experimental activities performed online. HIL test rigs are subjected to continuous updates, customization and natural ageing of their components. This work investigates the criteria that can be adopted to assure a continuous monitoring and validation of a real WSP test rig, the Italian test rig of Firenze Osmannoro.
文摘With the iterative development of autonomous driving technology,selfdriving cars will be one of the most competitive areas in the future.In order to provide students with a better understanding and more comprehensive grasp of autonomous driving technology,a hardware-in-the-loop based autonomous driving simulation test platform has been built.The hardware-in-the-loop system integrates MATLAB/Simulink to build the core control algorithm model,CarMaker simulation software to provide a virtual display interface and vehicle dynamics model,and NVIDIA Jetson to deploy the ECU(Electronic Control Unit)to improve the algorithm power and Logitech G29 series driving simulators providing signal input.It provides a simulation test platform for the development and testing of advanced driver assistance systems,the development and testing of upper layer control algorithms and underlying actuators for autonomous driving,and can provide a teaching and experimental platform for undergraduate students and a development foundation for postgraduate practice.
文摘This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2012CB215105.
文摘There is increasing interest in the evaluation of wind turbine control capabilities for providing grid support.Power hardware in the loop(PHIL)simulation is an advanced method that can be used for studying the interaction of hardware with the power network,as the scaled-down actual wind turbine is connected with a simulated system through an amplifier.Special consideration must be made in the design of the PHIL platform to ensure that the system is stable and yields accurate results.This paper presents a method for stabilizing the PHIL interface and improving the accuracy of PHIL simulation in a real-time application.The method factors in both the power and voltage scaling level,and a phase compensation scheme.It uses the reactive power control capability of the wind turbine inverter to eliminate the phase shift imposed by the feedback current filter.This is accomplished with no negative impact on the dynamic behavior of the wind turbine.The PHIL simulation results demonstrate the effectiveness of the proposed stability analysis method and phase compensation scheme.The strength of the platform is demonstrated by extending the simulation method to wind turbine control validation.
基金Supported by the National Natural Science Foundation of China(51507012)Beijing Nova Program(Z171100001117063)
文摘The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.
基金supported by the 863 National High Technology Research and Development Program of China(2011AA05AI02)China Southern Power Grid Company.
文摘This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.
基金supported by Norwegian University of Science and Technology.
文摘Integration of distributed generation(DG)can change the fault current level and direction in the distribution system,which affects the related protection system.In order to limit the negative impact of DG integration and upgrade the protection system performance,an intelligent coordinated protection and control strategy is proposed.A cost based optimization method is adopted to minimize the operation costs of possible solutions.Its aim is to define the optimal relay settings for the present operation condition,and the most suitable control mode of converter based wind turbine DG.Case studies on a hardware in the loop real time simulation platform demonstrate the proposed protection strategy.