Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In...Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In this paper, a new profiling technique is proposed, that incorporates the strength of both software and hardware to achieve near-zero overhead profiling. The compiler passes profiling requests as a few bits of information in branch instructions to the hardware, and the processor executes profiling operations asynchronously in available free slots or on dedicated hardware. The compiler instrumentation of this technique is implemented using an Itanium research compiler. The result shows that the accurate block profiling incurs very little overhead to the user program in terms of the program scheduling cycles. For example, the average overhead is 0.6% for the SPECint95 benchmarks. The hardware support required for the new profiling is practical. The technique is extended to collect edge profiles for continuous phase transition detection. It is believed that the hardware-software collaborative scheme will enable many profile-driven dynamic optimizations for EPIC processors such as the Itanium processors.展开更多
We present a simulation framework for wireless sensor networks developed to allow the design exploration and the complete microprocessor-instruction-level debug of network formation, data congestion, nodes interaction...We present a simulation framework for wireless sensor networks developed to allow the design exploration and the complete microprocessor-instruction-level debug of network formation, data congestion, nodes interaction, all in one simulation environment. A specifically innovative feature is the co-emulation of selected nodes at clock-cycle-accurate hardware processing level, allowing code debug and exact execution latency evaluation (considering both protocol stack and application), together with other nodes at abstract protocol level, meeting a designer’s needs of simulation speed, scalability and reliability. The simulator is centered on the Zigbee protocol and can be retargeted for different node micro-architectures.展开更多
At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being ...At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being studied by many to tackle the issue of the declining productivity of traditional construction methods. Although many studies have been done, most of the current 3D printing projects are facing limitations in terms of scale. In order to bridge the gap, this article proposed a mass customization 3D printing framework system for large-scale projects. This article discusses how mass customization is made possible through the joint operation of the FUROBOT software and 3D printing hardware. By taking the east gate of Nanjing Happy Valley Plaza as a case study, the article demonstrates and studies the feasibility of the large-scale mass customization 3D printing framework system.展开更多
文摘Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In this paper, a new profiling technique is proposed, that incorporates the strength of both software and hardware to achieve near-zero overhead profiling. The compiler passes profiling requests as a few bits of information in branch instructions to the hardware, and the processor executes profiling operations asynchronously in available free slots or on dedicated hardware. The compiler instrumentation of this technique is implemented using an Itanium research compiler. The result shows that the accurate block profiling incurs very little overhead to the user program in terms of the program scheduling cycles. For example, the average overhead is 0.6% for the SPECint95 benchmarks. The hardware support required for the new profiling is practical. The technique is extended to collect edge profiles for continuous phase transition detection. It is believed that the hardware-software collaborative scheme will enable many profile-driven dynamic optimizations for EPIC processors such as the Itanium processors.
文摘We present a simulation framework for wireless sensor networks developed to allow the design exploration and the complete microprocessor-instruction-level debug of network formation, data congestion, nodes interaction, all in one simulation environment. A specifically innovative feature is the co-emulation of selected nodes at clock-cycle-accurate hardware processing level, allowing code debug and exact execution latency evaluation (considering both protocol stack and application), together with other nodes at abstract protocol level, meeting a designer’s needs of simulation speed, scalability and reliability. The simulator is centered on the Zigbee protocol and can be retargeted for different node micro-architectures.
基金supported by the Shanghai Science and Technology Committee(Grant No.21DZ1204500)National Natural Science Foundation of China(Grant No.U1913603)。
文摘At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being studied by many to tackle the issue of the declining productivity of traditional construction methods. Although many studies have been done, most of the current 3D printing projects are facing limitations in terms of scale. In order to bridge the gap, this article proposed a mass customization 3D printing framework system for large-scale projects. This article discusses how mass customization is made possible through the joint operation of the FUROBOT software and 3D printing hardware. By taking the east gate of Nanjing Happy Valley Plaza as a case study, the article demonstrates and studies the feasibility of the large-scale mass customization 3D printing framework system.