Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition...Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.展开更多
In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of we...It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.展开更多
Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces,...Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.展开更多
Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear ope...Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -展开更多
Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL ge...Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.展开更多
Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possibl...Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.展开更多
Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,...Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,where f(z)=∞∑n=0a_(n)z^(n) is an analytic function in D.We characterize the positive Borel measures on[0,1)such thatDHμ(f)(z)=f[0,1)f(t)/(1-tz)^(2)dμ(t) for all f in the Hardy spaces Hp(0<p<∞),and among these we describe those for which is a bounded(resp.,compact)operator from Hp(0<p<∞)into Hq(q>p and q≥1).We also study the analogous problem in the Hardy spaces H^(p)(1≤p≤2).展开更多
This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of th...This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).展开更多
We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type inte...We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.展开更多
We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition a...We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.展开更多
In this paper, we discuss the boundedness of Marcinkiewicz integral μΩ with homogeneous kernel on the weighted Herz-type Hardy spaces, and prove that μΩ is bounded from HKq^a、P(ω1;ω2) into Kq^a、p (ω1; ω2).
In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on...In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.展开更多
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
基金NNSFC(11771223,11501308)Natural science foundation of Inner Mongolia(2019MS01003).
文摘Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by NSF of China (10571164)SRFDP of Higher Education (20050358052)
文摘Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.
文摘In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
基金This paperwas written while theauthorwasresearching at Humboldt University in Berlin supported by Alexandervon Humboldt Foundation.This research was also supported by the Hungarian Scientific Research Funds (OTKA) NoF0 1 963 3 and by the Foundation
文摘It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.
基金Supported by the NECF and the NECF and the NNSF of China
文摘Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.
基金Supported by NSF of China and the Fund of Doctoral Program of N.E.C.
文摘Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -
文摘Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.
文摘Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.
基金supported by the Zhejiang Provincial Natural Science Foundation (LY23A010003)the National Natural Science Foundation of China (11671357).
文摘Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,where f(z)=∞∑n=0a_(n)z^(n) is an analytic function in D.We characterize the positive Borel measures on[0,1)such thatDHμ(f)(z)=f[0,1)f(t)/(1-tz)^(2)dμ(t) for all f in the Hardy spaces Hp(0<p<∞),and among these we describe those for which is a bounded(resp.,compact)operator from Hp(0<p<∞)into Hq(q>p and q≥1).We also study the analogous problem in the Hardy spaces H^(p)(1≤p≤2).
文摘This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).
基金supported by the National Natural Science Foundation of China(11771441 and 11601400)。
文摘We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.
文摘We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.
文摘In this paper, we discuss the boundedness of Marcinkiewicz integral μΩ with homogeneous kernel on the weighted Herz-type Hardy spaces, and prove that μΩ is bounded from HKq^a、P(ω1;ω2) into Kq^a、p (ω1; ω2).
基金Supported by the National Natural Foundation of China(10671147)
文摘In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.