In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as...In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as binomial coefficients are derived.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extende...In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extended binomial coefficients,and the Stirling numbers of the first and second kinds.These results are new,interesting,important,useful,and applicable in combinatorial number theory.展开更多
In this paper,we give several identities of finite sums and some infinite series involving powers and inverse of binomial coefficients,which extends the results of T.Trif.
In 1973, Gould and Hsu proved an important reciprocal theorem. The inverse relations determined by the theorem are useful in combinatorial computation, proof of identities and interpolation process. In the present not...In 1973, Gould and Hsu proved an important reciprocal theorem. The inverse relations determined by the theorem are useful in combinatorial computation, proof of identities and interpolation process. In the present note, we shall establish the multivariate ver-展开更多
基金Supported by Zhoukou Normal University High-Level Talents Start-Up Funds Research Project(Grant No.ZKNUC2022007)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX240725).
文摘In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as binomial coefficients are derived.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
基金supported in part by the National Natural Science Foundation of China(Grant No.12061033)by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grants No.NJZY20119)by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007),China.
文摘In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extended binomial coefficients,and the Stirling numbers of the first and second kinds.These results are new,interesting,important,useful,and applicable in combinatorial number theory.
基金Supported by the National Natural Science Foundation of China (Grant No. 11061020)the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 20080404MS010)
文摘In this paper,we give several identities of finite sums and some infinite series involving powers and inverse of binomial coefficients,which extends the results of T.Trif.
文摘In 1973, Gould and Hsu proved an important reciprocal theorem. The inverse relations determined by the theorem are useful in combinatorial computation, proof of identities and interpolation process. In the present note, we shall establish the multivariate ver-