The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Final...In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α...A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α,β)by generalized Salagean operator of harmonic univalent functions. We give sufficient coefficient conditions for normalized harmonic functions in the class SHPλ(α,β) These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.展开更多
The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize th...The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem.展开更多
A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) b...A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) by generalized Salagean operator of harmonic univalent functions.We give sufficient coefficient conditions for normalized harmonic functions in the class LH_λ(α,β).These conditions are also shown to be necessary when the coefficients are negative.This leads to distortion bounds and extreme points.展开更多
We introduce a new class of complex valued harmonic functions associated with Wright hypergeometric functions which are orientation preserving and univalent in the open unit disc. Further we define, Wright generalized...We introduce a new class of complex valued harmonic functions associated with Wright hypergeometric functions which are orientation preserving and univalent in the open unit disc. Further we define, Wright generalized operator on harmonic function and investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.展开更多
For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classica...For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).展开更多
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at...In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at infinity is a unique metric cone with a conic measure.展开更多
We establish a precise Schwarz lemma for real-valued and bounded harmonic functions in the real unit ball of dimension n. This extends Chen's Schwarz-Pick lemma for real-valued and bounded planar harmonic mapping.
In this paper, applying the theory of complex-functional, not only the spaceharmonic functions in polynomial form. but aIso the spherical functions are obtained.
A direct boundary element method (BEM) has been studied in the paper based on a set of sufficient and necessary boundary integral equations (BIE) for the plane harmonic functions. The new sufficient and necessary BEM ...A direct boundary element method (BEM) has been studied in the paper based on a set of sufficient and necessary boundary integral equations (BIE) for the plane harmonic functions. The new sufficient and necessary BEM leads to accurate results while the conventional insufficient BEM will lead to inaccurate results when the conventional BIE has multiple solutions. Theoretical and numerical analyses show that it is beneficial to use the sufficient and necessary BEM, to avoid hidden dangers due to non-unique solution of the conventional BIE.展开更多
In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent resul...In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent results are also discussed.展开更多
In this paper we establish sharp H/51der estimates of harmonic functions on a class of connected post critically finite (p.c.f.) self-similar sets, and show that functions in the domain of Laplacian enjoy the same p...In this paper we establish sharp H/51der estimates of harmonic functions on a class of connected post critically finite (p.c.f.) self-similar sets, and show that functions in the domain of Laplacian enjoy the same property. Some weU-known examples, such as the Sierpinski gasket, the unit interval, the level 3 Sierpinski gasket, the hexagasket, the 3-dimensional Sierpinski gasket, and the Vicsek set are also considered.展开更多
In this paper we establish the oscillation inequality of harmonic functions and HOlder estimate of the functions in the domain of the Laplacian on connected post critically finite (p.c.f.) self-similar sets.
In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Gali...In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Galileo dual-frequency observation data from the 305th-334th day of the European CORS network in 2019 to establish a global ionospheric model.By analyzing and evaluating the accuracy of the global ionospheric puncture points,VTEC,and comparing code products,the test results showed that the GPS system has the most dense puncture electricity distribution,the Glonass system is the second,and the Galileo system is the weakest.The values of ionospheric VTEC calculated by GPS,Glonass and Galileo are slightly different,but in terms of trends,they are the same as those of ESA,JPL and UPC.GPS data has the highest accuracy in global ionospheric modeling.GPS,Glonass and Galileo have the same trend,but Glonass data is unstable and fluctuates greatly.展开更多
Let be a hypercube in Rn. We prove theorems concerning mean-values of harmonic and polyharmonic functions on In(r), which can be considered as natural analogues of the famous Gauss surface and volume mean-value formul...Let be a hypercube in Rn. We prove theorems concerning mean-values of harmonic and polyharmonic functions on In(r), which can be considered as natural analogues of the famous Gauss surface and volume mean-value formulas for harmonic functions on the ball in and their extensions for polyharmonic functions. We also discuss an application of these formulas—the problem of best canonical one-sided L1-approximation by harmonic functions on In(r).展开更多
We propose a method for finding approximate analytic solutions to autonomous single degree-of-freedom nonlinear oscillator equations. It consists of the harmonic balance with linearization in which Jacobian elliptic f...We propose a method for finding approximate analytic solutions to autonomous single degree-of-freedom nonlinear oscillator equations. It consists of the harmonic balance with linearization in which Jacobian elliptic functions are used instead of circular trigonometric functions. We show that a simple change of independent variable followed by a careful choice of the form of anharmonic solution enable to obtain highly accurate approximate solutions. In particular our examples show that the proposed method is as easy to use as existing harmonic balance based methods and yet provides substantially greater accuracy.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金The Doctoral Programs Foundation(20113401110009)of Education Ministry of ChinaNatural Science Research Project(2012kj11)of Hefei Normal University+1 种基金Universities Natural Science Foundation(KJ2013A220)of Anhui ProvinceResearch Project of Graduates Innovation Fund(2014yjs02)
文摘In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
基金Supported by the Key Scientific Research Fund of Inner Mongolian Educational Bureau (NJ04115)
文摘A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α,β)by generalized Salagean operator of harmonic univalent functions. We give sufficient coefficient conditions for normalized harmonic functions in the class SHPλ(α,β) These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.
基金Project supported by the Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (IHLB201008257)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200810011005)+1 种基金PHR (IHLB 201102)research grant of University of Macao MYRG142(Y1-L2)-FST111-KKI
文摘The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem.
基金Foundation item: Supported by the Natural Science Foundation of Inner Mongolia(2009MS0113) Supported by the Higher School Research Foundation of Inner Mongolia(NJzy08150)
文摘A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) by generalized Salagean operator of harmonic univalent functions.We give sufficient coefficient conditions for normalized harmonic functions in the class LH_λ(α,β).These conditions are also shown to be necessary when the coefficients are negative.This leads to distortion bounds and extreme points.
文摘We introduce a new class of complex valued harmonic functions associated with Wright hypergeometric functions which are orientation preserving and univalent in the open unit disc. Further we define, Wright generalized operator on harmonic function and investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.
文摘For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金partially supported by NSFC(11701580and 11521101)the Fundamental Research Funds for the Central Universities(17lgpy13)
文摘In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at infinity is a unique metric cone with a conic measure.
基金Research supported by the National Natural Science Foundation of China(1120119911071083+1 种基金11671361)Jiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents
文摘We establish a precise Schwarz lemma for real-valued and bounded harmonic functions in the real unit ball of dimension n. This extends Chen's Schwarz-Pick lemma for real-valued and bounded planar harmonic mapping.
文摘In this paper, applying the theory of complex-functional, not only the spaceharmonic functions in polynomial form. but aIso the spherical functions are obtained.
文摘A direct boundary element method (BEM) has been studied in the paper based on a set of sufficient and necessary boundary integral equations (BIE) for the plane harmonic functions. The new sufficient and necessary BEM leads to accurate results while the conventional insufficient BEM will lead to inaccurate results when the conventional BIE has multiple solutions. Theoretical and numerical analyses show that it is beneficial to use the sufficient and necessary BEM, to avoid hidden dangers due to non-unique solution of the conventional BIE.
文摘In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent results are also discussed.
基金supported by the grants NSFC11201232, 12KJB110008Qing Lan Project, 13KJB110015, 12YJAZH096the Project-sponsored by SRF for ROCS, SEM
文摘In this paper we establish sharp H/51der estimates of harmonic functions on a class of connected post critically finite (p.c.f.) self-similar sets, and show that functions in the domain of Laplacian enjoy the same property. Some weU-known examples, such as the Sierpinski gasket, the unit interval, the level 3 Sierpinski gasket, the hexagasket, the 3-dimensional Sierpinski gasket, and the Vicsek set are also considered.
基金supported by the National Natural Science Foundation of China(No.11201232)Qing Lan Project of Jiangsu Province
文摘In this paper we establish the oscillation inequality of harmonic functions and HOlder estimate of the functions in the domain of the Laplacian on connected post critically finite (p.c.f.) self-similar sets.
基金Key Research and Development Program of Liaoning Province(2020JH2/10100044)National Natural Science Foundation of China(41904037)National Key Basic Research and Development Program(973 Program)(2016YFC0803102)。
文摘In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Galileo dual-frequency observation data from the 305th-334th day of the European CORS network in 2019 to establish a global ionospheric model.By analyzing and evaluating the accuracy of the global ionospheric puncture points,VTEC,and comparing code products,the test results showed that the GPS system has the most dense puncture electricity distribution,the Glonass system is the second,and the Galileo system is the weakest.The values of ionospheric VTEC calculated by GPS,Glonass and Galileo are slightly different,but in terms of trends,they are the same as those of ESA,JPL and UPC.GPS data has the highest accuracy in global ionospheric modeling.GPS,Glonass and Galileo have the same trend,but Glonass data is unstable and fluctuates greatly.
文摘Let be a hypercube in Rn. We prove theorems concerning mean-values of harmonic and polyharmonic functions on In(r), which can be considered as natural analogues of the famous Gauss surface and volume mean-value formulas for harmonic functions on the ball in and their extensions for polyharmonic functions. We also discuss an application of these formulas—the problem of best canonical one-sided L1-approximation by harmonic functions on In(r).
文摘We propose a method for finding approximate analytic solutions to autonomous single degree-of-freedom nonlinear oscillator equations. It consists of the harmonic balance with linearization in which Jacobian elliptic functions are used instead of circular trigonometric functions. We show that a simple change of independent variable followed by a careful choice of the form of anharmonic solution enable to obtain highly accurate approximate solutions. In particular our examples show that the proposed method is as easy to use as existing harmonic balance based methods and yet provides substantially greater accuracy.