Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems....Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.They imi-tate the theory of natural selection and evolution.The harmony search algorithm(HSA)is one of the most recent search algorithms in the last years.It imitates the behavior of a musician tofind the best harmony.Scholars have estimated the simi-larities and the differences between genetic algorithms and the harmony search algorithm in diverse research domains.The test data generation process represents a critical task in software validation.Unfortunately,there is no work comparing the performance of genetic algorithms and the harmony search algorithm in the test data generation process.This paper studies the similarities and the differences between genetic algorithms and the harmony search algorithm based on the ability and speed offinding the required test data.The current research performs an empirical comparison of the HSA and the GAs,and then the significance of the results is estimated using the t-Test.The study investigates the efficiency of the harmony search algorithm and the genetic algorithms according to(1)the time performance,(2)the significance of the generated test data,and(3)the adequacy of the generated test data to satisfy a given testing criterion.The results showed that the harmony search algorithm is significantly faster than the genetic algo-rithms because the t-Test showed that the p-value of the time values is 0.026<α(αis the significance level=0.05 at 95%confidence level).In contrast,there is no significant difference between the two algorithms in generating the adequate test data because the t-Test showed that the p-value of thefitness values is 0.25>α.展开更多
Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highl...Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highly determine the advantage of compensation. A novel global harmony search(GHS) algorithm in parallel with the backward/ forward sweep power flow technique and radial harmonic power flow was used to investigate the optimal placement and sizing of capacitors in radial distribution networks for minimizing power loss and total cost by taking account load unbalancing, mutual coupling and harmonics. The optimal capacitor placement outcomes show that the GHS algorithm can reduce total power losses up to 60 k W and leads to more than 18% of cost saving. The results also demonstrate that the GHS algorithm is more effective in minimization of power loss and total costs compared with genetic algorithm(GA), particle swarm optimization(PSO) and harmony search(HS) algorithm. Moreover, the proposed algorithm converges within 800 iterations and is faster in terms of computational time and gives better performance in finding optimal capacitor location and size compared with other optimization techniques.展开更多
With the construction of automated docks,health monitoring technology as a parallel safety assurance technology for unmanned hoisting machinery has become a hot spot in the development of the industry.Hoisting machine...With the construction of automated docks,health monitoring technology as a parallel safety assurance technology for unmanned hoisting machinery has become a hot spot in the development of the industry.Hoisting machinery has a huge structure and numerous welded joints.The complexity and nonlinearity of the welded structure itself makes the structural failure parts random and difficult to arrange for monitoring sensors.In order to solve the problem of effectiveness and stability of the sensor arrangement method for monitoring the structure of hoisting machinery.Using the global and local search capabilities enhanced by the complementary search mechanism,a structural vibration monitoring sensor placement algorithm based on the harmony genetic algorithm is proposed.Firstly,the model is established for modal analysis to obtain the displacement matrix of each mode.Secondly,the optimal parameter combination is established through parameter comparison,and the random search mechanism is used to quickly search in the modal matrix to obtain the preliminary solution,and then the preliminary solution is genetically summed The mutation operation obtains the optimized solution,and the optimal solution is retained through repeated iterations to realize the decision of the vibration sensor layout of the crane structure monitoring.Combining the comparison test of harmony genetic algorithm,harmony search algorithm and genet-ic algorithm,the fitness of harmony genetic algorithm in X,Y and Z directions were 0.0045,0.0084 and 0.0058,respectively,which were all optimal.And the average probability of deviating from the optimal path is 1.10%,19.34%,and 54.43%,which are also optimal.Harmony genetic algorithm has the advantages of simplicity,fastness and strong global search ability,and can obtain better fitness value and better search stability.展开更多
A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints i...A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints in distributing workload equally between available nurses is still a difficult task to achieve.The international shortage of nurses,in addition to the spread of COVID-19,has made it more difficult to provide convenient rosters for nurses.Based on the literature,heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity,especially for large rosters.Heuristic-based algorithms in general have problems striking the balance between diversification and intensification.Therefore,this paper aims to introduce a novel metaheuristic hybridization that combines the enhanced harmony search algorithm(EHSA)with the simulated annealing(SA)algorithm called the annealing harmony search algorithm(AHSA).The AHSA is used to solve NRP from a Malaysian hospital.The AHSA performance is compared to the EHSA,climbing harmony search algorithm(CHSA),deluge harmony search algorithm(DHSA),and harmony annealing search algorithm(HAS).The results show that the AHSA performs better than the other compared algorithms for all the tested instances where the best ever results reported for the UKMMC dataset.展开更多
The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of vari...The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer,which has gained momentum in the form of microgrids(MGs).This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day.In a smart distribution network(DN),MGs can reduce their own costs in the previous-day market by bidding on sales and purchases.The sales and purchases bidding problem is challenging due to different uncertainties,however.This paper proposes a two-stage strategy for making an optimal bid on electricity sales and purchases with electricity and gas price dependency in the previous-day and real-time markets for an energy hub.In this model,the MG behavior regarding the electricity and gas energy sales/purchase,the simultaneous effects of electricity and gas prices,as well as the energy carriers’dependence on one another are all examined.Due to the inherent uncertainty in the sources of clean energy production,the probabilistic model and the production and reduction scenario have been used in the paper to cover this issue.In the proposed grid,energy sales/purchases are presented in a multi-carrier MG in a two-stage model.This model is solved by using the harmony search algorithm in MATLAB.Numeric results demonstrate the benefits of this model in reducing energy hub costs of operation.展开更多
A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a c...A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
Harmony search(HS)is a form of stochastic meta-heuristic inspired by the improvisation process of musicians.In this study,a modified HS with a hybrid cuckoo search(CS)operator,HS-CS,is proposed to enhance global searc...Harmony search(HS)is a form of stochastic meta-heuristic inspired by the improvisation process of musicians.In this study,a modified HS with a hybrid cuckoo search(CS)operator,HS-CS,is proposed to enhance global search ability while avoiding falling into local optima.First,the randomness of the HS pitch disturbance adjusting method is analyzed to generate an adaptive inertia weight according to the quality of solutions in the harmony memory and to reconstruct the fine-tuning bandwidth optimization.This is to improve the efficiency and accuracy of HS algorithm optimization.Second,the CS operator is introduced to expand the scope of the solution space and improve the density of the population,which can quickly jump out of the local optimum in the randomly generated harmony and update stage.Finally,a dynamic parameter adjustment mechanism is set to improve the efficiency of optimization.Three theorems are proved to reveal HS-CS as a global convergence meta-heuristic algorithm.In addition,12 benchmark functions are selected for the optimization solution to verify the performance of HS-CS.The analysis shows that HS-CS is significantly better than other algorithms in optimizing high-dimensional problems with strong robustness,high convergence speed,and high convergence accuracy.For further verification,HS-CS is used to optimize the back propagation neural network(BPNN)to extract weighted fuzzy production rules.Simulation results show that the BPNN optimized by HS-CS can obtain higher classification accuracy of weighted fuzzy production rules.Therefore,the proposed HS-CS is proved to be effective.展开更多
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ...Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.展开更多
In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by impr...In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by improvising, updating and checking operators. In the proposed improved self-adaptive HS (SGHS) algorithm, two important control parameters were adjusted to reach better solution from the simple HS algorithm. The objective function of this study consisted of operation, start-up and shut-down costs. To confirm the effectiveness, the SGHS algorithm was tested on systems with 10, 20, 40 and 60 generating units, and the obtained results were compared with those of the simple HS algorithm and other related works.展开更多
Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper f...Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.展开更多
Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protect...Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protection,as well as the operation of distributed generation resources in the distribution network,factors such as improving reliability,increasing production capacity of the distribution network,stabilizing the voltage of the distribution network,reducing peak clipping losses,as well as economic and environmental considerations,have expanded the influence of distributed generation(DG)resources in the distribution network.The location of DG sources and their capacity are the key factors in the effectiveness of distributed generation in the voltage stability of distribution systems.Nowadays,along with the scattered production sources of electric vehicles with the ability to connect to the network,due to having an energy storage system,they are known as valuable resources that can provide various services to the power system.These vehicles can empower the grid or be used as a storage supply source when parked and connected to the grid.This paper introduces and studies a two-stage planning framework for the concurrent management of many electric vehicles and distributed generation resources with private ownership.In the first stage,the aim is to increase the profit of electric vehicles and distributed generation sources;finally,the purpose is to reduce operating costs.The proposed scheduling framework is tested on a distribution network connected to bus 5 of the RBTS sample network.Besides distributed generation sources and electric vehicles,we integrate time-consistent load management into the system.Due to distributed generation sources such as photovoltaic systems and wind turbines and the studied design in the modeling,we use the Taguchi TOAT algorithm to generate and reduce the scenario to ensure the uncertainty in renewable energy.MATLAB software is used to solve the problem and select the optimal answer.展开更多
In view of complex optimization problems with high nonlinearity and multiple extremums,harmony search algorithm has problems of slow convergence speed,being easy to be stalled and difficult to combine global search wi...In view of complex optimization problems with high nonlinearity and multiple extremums,harmony search algorithm has problems of slow convergence speed,being easy to be stalled and difficult to combine global search with local search.Therefore,a global competitive harmonic search algorithm based on stochastic attraction is proposed.Firstly,by introducing the stochastic attraction model to adjust the harmonic vector,the harmonic search algorithm was greatly improved and prone to fall into the local optimum.Secondly,the competitive search strategy was made to generate two harmony vectors for each iteration and make competitive selection.The adaptive global adjustment and local search strategy were designed to effectively balance the global and local search capabilities of the algorithm.The typical test function was used to test the algorithm.The experimental results show that the algorithm has high precision and the ability to find the global optimum compared with the existing algorithms.The overall accuracy is increased by more than 50%.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy ...Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.展开更多
文摘Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.They imi-tate the theory of natural selection and evolution.The harmony search algorithm(HSA)is one of the most recent search algorithms in the last years.It imitates the behavior of a musician tofind the best harmony.Scholars have estimated the simi-larities and the differences between genetic algorithms and the harmony search algorithm in diverse research domains.The test data generation process represents a critical task in software validation.Unfortunately,there is no work comparing the performance of genetic algorithms and the harmony search algorithm in the test data generation process.This paper studies the similarities and the differences between genetic algorithms and the harmony search algorithm based on the ability and speed offinding the required test data.The current research performs an empirical comparison of the HSA and the GAs,and then the significance of the results is estimated using the t-Test.The study investigates the efficiency of the harmony search algorithm and the genetic algorithms according to(1)the time performance,(2)the significance of the generated test data,and(3)the adequacy of the generated test data to satisfy a given testing criterion.The results showed that the harmony search algorithm is significantly faster than the genetic algo-rithms because the t-Test showed that the p-value of the time values is 0.026<α(αis the significance level=0.05 at 95%confidence level).In contrast,there is no significant difference between the two algorithms in generating the adequate test data because the t-Test showed that the p-value of thefitness values is 0.25>α.
文摘Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highly determine the advantage of compensation. A novel global harmony search(GHS) algorithm in parallel with the backward/ forward sweep power flow technique and radial harmonic power flow was used to investigate the optimal placement and sizing of capacitors in radial distribution networks for minimizing power loss and total cost by taking account load unbalancing, mutual coupling and harmonics. The optimal capacitor placement outcomes show that the GHS algorithm can reduce total power losses up to 60 k W and leads to more than 18% of cost saving. The results also demonstrate that the GHS algorithm is more effective in minimization of power loss and total costs compared with genetic algorithm(GA), particle swarm optimization(PSO) and harmony search(HS) algorithm. Moreover, the proposed algorithm converges within 800 iterations and is faster in terms of computational time and gives better performance in finding optimal capacitor location and size compared with other optimization techniques.
基金The author gratefully acknowledges the support of this work by the national key research and development project under the Grant No.2017YFC0805100China Special Equipment Inspection and Research Institute under the Grant No.2021 Youth 17.
文摘With the construction of automated docks,health monitoring technology as a parallel safety assurance technology for unmanned hoisting machinery has become a hot spot in the development of the industry.Hoisting machinery has a huge structure and numerous welded joints.The complexity and nonlinearity of the welded structure itself makes the structural failure parts random and difficult to arrange for monitoring sensors.In order to solve the problem of effectiveness and stability of the sensor arrangement method for monitoring the structure of hoisting machinery.Using the global and local search capabilities enhanced by the complementary search mechanism,a structural vibration monitoring sensor placement algorithm based on the harmony genetic algorithm is proposed.Firstly,the model is established for modal analysis to obtain the displacement matrix of each mode.Secondly,the optimal parameter combination is established through parameter comparison,and the random search mechanism is used to quickly search in the modal matrix to obtain the preliminary solution,and then the preliminary solution is genetically summed The mutation operation obtains the optimized solution,and the optimal solution is retained through repeated iterations to realize the decision of the vibration sensor layout of the crane structure monitoring.Combining the comparison test of harmony genetic algorithm,harmony search algorithm and genet-ic algorithm,the fitness of harmony genetic algorithm in X,Y and Z directions were 0.0045,0.0084 and 0.0058,respectively,which were all optimal.And the average probability of deviating from the optimal path is 1.10%,19.34%,and 54.43%,which are also optimal.Harmony genetic algorithm has the advantages of simplicity,fastness and strong global search ability,and can obtain better fitness value and better search stability.
文摘A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints in distributing workload equally between available nurses is still a difficult task to achieve.The international shortage of nurses,in addition to the spread of COVID-19,has made it more difficult to provide convenient rosters for nurses.Based on the literature,heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity,especially for large rosters.Heuristic-based algorithms in general have problems striking the balance between diversification and intensification.Therefore,this paper aims to introduce a novel metaheuristic hybridization that combines the enhanced harmony search algorithm(EHSA)with the simulated annealing(SA)algorithm called the annealing harmony search algorithm(AHSA).The AHSA is used to solve NRP from a Malaysian hospital.The AHSA performance is compared to the EHSA,climbing harmony search algorithm(CHSA),deluge harmony search algorithm(DHSA),and harmony annealing search algorithm(HAS).The results show that the AHSA performs better than the other compared algorithms for all the tested instances where the best ever results reported for the UKMMC dataset.
基金supported as a Major Project of the Beijing Social Science Foundation“Research on Financial Support System Adapting to the Coordinated Development of Strategic Emerging Industries in Beijing-Tianjin-Hebei”,No.20ZDA11.
文摘The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer,which has gained momentum in the form of microgrids(MGs).This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day.In a smart distribution network(DN),MGs can reduce their own costs in the previous-day market by bidding on sales and purchases.The sales and purchases bidding problem is challenging due to different uncertainties,however.This paper proposes a two-stage strategy for making an optimal bid on electricity sales and purchases with electricity and gas price dependency in the previous-day and real-time markets for an energy hub.In this model,the MG behavior regarding the electricity and gas energy sales/purchase,the simultaneous effects of electricity and gas prices,as well as the energy carriers’dependence on one another are all examined.Due to the inherent uncertainty in the sources of clean energy production,the probabilistic model and the production and reduction scenario have been used in the paper to cover this issue.In the proposed grid,energy sales/purchases are presented in a multi-carrier MG in a two-stage model.This model is solved by using the harmony search algorithm in MATLAB.Numeric results demonstrate the benefits of this model in reducing energy hub costs of operation.
文摘A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.
基金supported by the National Natural Science Foundation of China (No.62066016)the Natural Science Foundation of Hunan Province,China (No.2020JJ5458)+3 种基金the Research Foundation of Education Bureau of Hunan Province,China (Nos.22B0549 and 22B1046)the Fundamental Research Grant Scheme of Malaysia (No.R.J130000.7809.5F524)the UTMFR Grant (No.Q.J130000.2551.20H71)the Research Management Center (RMC)of Universiti Teknologi Malaysia (UTM)。
文摘Harmony search(HS)is a form of stochastic meta-heuristic inspired by the improvisation process of musicians.In this study,a modified HS with a hybrid cuckoo search(CS)operator,HS-CS,is proposed to enhance global search ability while avoiding falling into local optima.First,the randomness of the HS pitch disturbance adjusting method is analyzed to generate an adaptive inertia weight according to the quality of solutions in the harmony memory and to reconstruct the fine-tuning bandwidth optimization.This is to improve the efficiency and accuracy of HS algorithm optimization.Second,the CS operator is introduced to expand the scope of the solution space and improve the density of the population,which can quickly jump out of the local optimum in the randomly generated harmony and update stage.Finally,a dynamic parameter adjustment mechanism is set to improve the efficiency of optimization.Three theorems are proved to reveal HS-CS as a global convergence meta-heuristic algorithm.In addition,12 benchmark functions are selected for the optimization solution to verify the performance of HS-CS.The analysis shows that HS-CS is significantly better than other algorithms in optimizing high-dimensional problems with strong robustness,high convergence speed,and high convergence accuracy.For further verification,HS-CS is used to optimize the back propagation neural network(BPNN)to extract weighted fuzzy production rules.Simulation results show that the BPNN optimized by HS-CS can obtain higher classification accuracy of weighted fuzzy production rules.Therefore,the proposed HS-CS is proved to be effective.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)and the Ministry of Trade,Industry&Energy,Republic of Korea (RS-2024-00441420RS-2024-00442817).
文摘Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.
文摘In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by improvising, updating and checking operators. In the proposed improved self-adaptive HS (SGHS) algorithm, two important control parameters were adjusted to reach better solution from the simple HS algorithm. The objective function of this study consisted of operation, start-up and shut-down costs. To confirm the effectiveness, the SGHS algorithm was tested on systems with 10, 20, 40 and 60 generating units, and the obtained results were compared with those of the simple HS algorithm and other related works.
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.RG-91-611-42.
文摘Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.
文摘Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protection,as well as the operation of distributed generation resources in the distribution network,factors such as improving reliability,increasing production capacity of the distribution network,stabilizing the voltage of the distribution network,reducing peak clipping losses,as well as economic and environmental considerations,have expanded the influence of distributed generation(DG)resources in the distribution network.The location of DG sources and their capacity are the key factors in the effectiveness of distributed generation in the voltage stability of distribution systems.Nowadays,along with the scattered production sources of electric vehicles with the ability to connect to the network,due to having an energy storage system,they are known as valuable resources that can provide various services to the power system.These vehicles can empower the grid or be used as a storage supply source when parked and connected to the grid.This paper introduces and studies a two-stage planning framework for the concurrent management of many electric vehicles and distributed generation resources with private ownership.In the first stage,the aim is to increase the profit of electric vehicles and distributed generation sources;finally,the purpose is to reduce operating costs.The proposed scheduling framework is tested on a distribution network connected to bus 5 of the RBTS sample network.Besides distributed generation sources and electric vehicles,we integrate time-consistent load management into the system.Due to distributed generation sources such as photovoltaic systems and wind turbines and the studied design in the modeling,we use the Taguchi TOAT algorithm to generate and reduce the scenario to ensure the uncertainty in renewable energy.MATLAB software is used to solve the problem and select the optimal answer.
文摘In view of complex optimization problems with high nonlinearity and multiple extremums,harmony search algorithm has problems of slow convergence speed,being easy to be stalled and difficult to combine global search with local search.Therefore,a global competitive harmonic search algorithm based on stochastic attraction is proposed.Firstly,by introducing the stochastic attraction model to adjust the harmonic vector,the harmonic search algorithm was greatly improved and prone to fall into the local optimum.Secondly,the competitive search strategy was made to generate two harmony vectors for each iteration and make competitive selection.The adaptive global adjustment and local search strategy were designed to effectively balance the global and local search capabilities of the algorithm.The typical test function was used to test the algorithm.The experimental results show that the algorithm has high precision and the ability to find the global optimum compared with the existing algorithms.The overall accuracy is increased by more than 50%.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
基金The authors wish to thank the editor and anonymous referees for their constructive comments and recommendations, which have significantly improved the presentation of this paper. This work is supported by National Nature Science Foundation of China (Grant Nos. 60674021, 61273155).
文摘Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.