Thermal diffusivity(D)and thermal conductivity(κ)of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus...Thermal diffusivity(D)and thermal conductivity(κ)of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus.The results show that the values of D andκof both samples systematically decrease with increasing temperature and increase with increasing pressure.By combination of the thermal physical data of rocks and minerals and geophysical constraints,we performed numerical simulation on the thermal evolution of Tibet vary over depth,distance and geologic ages.The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.展开更多
The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical dat...The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.展开更多
Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow-to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes.The Tian...Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow-to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes.The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge,Northwest Indian Ocean.Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m(3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field.Calcite veins Ⅰ occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite,while calcite veins Ⅱ precipitate within the mesh texture in the relatively weaker serpentinized harzburgite.Both veins show similar δ13CPDB(+0.54‰ and +0.58‰) but different δ18OPDB(-16.67‰ and +4.46‰) values,suggesting that they were derived from the same carbon source but precipitated at different temperatures.Taking the deep seawater temperature of 2℃as the precipitation temperature of the calcite veins I,the equilibrium δ18OV-SMOW of calcite-precipitating fluid was calculated to be 1.78‰,which is close to the average δ18OV-SMOW value(1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide.The formation temperature of calcite veins Ⅱ is inferred to be approximately 134℃,based on the calculated δ18OV-SMOW above.The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow.The low-temperature calcite postdates the mesh texture,while the high-temperature calcite may precipitate under relatively low water/rock ratios,alkaline and reduced conditions among the mesh texture,which is revealed by the geochemical models.Therefore,it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.展开更多
Reactions between a boninitic or basaltic magma and harzburgite at shallow mantle depths are thought to be closely related to the formation of podiform chromitites,but little experimental data is available on these re...Reactions between a boninitic or basaltic magma and harzburgite at shallow mantle depths are thought to be closely related to the formation of podiform chromitites,but little experimental data is available on these reactions.In this study,a series of experiments were conducted at 1.5GPa and 1 000–1 400 oC to investigate the interactions between boninitic magma and harzburgite in homogenous mixed systems with varied bulk concentrations of water(~0.7 wt.%–10 wt.%)and Cr2O3(~0.2 wt.%–4 wt.%).In the experimental charges,chromite grains can be observed coexisting with orthopyroxene,clinopyroxene±olivine,and quenched melt in the Cr-bearing systems.The bulk concentration of Cr2O3 in the starting material has a slight effect on compositional changes in the chromites generated.However,the Cr#(Cr#=100×Cr/(Cr+Al))and Mg#(Mg#=100×Mg/(Mg+Fe))values for the chromites exhibit positive and negative correlations,respectively,with the bulk H2O concentrations.At 1 100 oC,chromite Cr#values range from^33–35 to^58–65,and chromite Mg#values range from^70–73 to^55–58when bulk H2O contents in the starting material are increased from^0.7 wt.%to^10 wt.%.The experimentally produced chromites have compositions(as expressed by Cr#,Mg#,and Ni O and Mn O contents)similar to natural chromites from low-Cr#chromitite bodies.We suggest that the interactions between boninitic magmas with varied H2O contents and harzburgite in a shallow mantle wedge could be a possible mechanism that forms the low-Cr#chromitites found in ophiolites.We emphasize here that H2O may play an important role in the compositional evolutions of natural chromitites.展开更多
The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)enviro...The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.展开更多
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1...Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.展开更多
Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amph...Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amphibole are found in these harzburgites: magnesiohornblende accompanied by clinopy-roxene with higher Al2O3 content (>7%) and lower Mg#; tremolite around orthopyroxene with lower Al2O3 content (< 2%) and higher Mg#. Trace element of clinopyroxene and two types of amphibole are ana-lyzed. Primitive mantle-normalised REE patterns for clinopyroxene and magnesio hornblende are very similar and both show HREE enrichment relative to LREE,while magnesiohornblende has higher con-tent of trace element than clinopyroxene. The contents of trace element of tremolite are much lower than those of magnesiohornblende. Clinopyroxene shows enrichment of most of the trace element except HREE and Ti relative to clinopyroxene in abyssal peridotites. Petrology and trace element characteristic of clinopyroxene and two types of amphibole indicate that southern Mariana fore-arc harzburgites underwent two stages of metasomatism. The percolation of a hydrous melt led to mobility of Al,Ca,Fe,Mg,Na,and large amounts of trace element. LILE and LREE can be more active in hydrous melt than HREE and Ti,and the activities of most of the trace element except some of LILE are influ-enced by temperature and pressure.展开更多
The North Qaidam UHPM(ultra-high pressure metamorphism) belt is a typical continental subduction-collision belt containing continental crust deep subduction metamorphic products and oceanic crust relics, And it is a...The North Qaidam UHPM(ultra-high pressure metamorphism) belt is a typical continental subduction-collision belt containing continental crust deep subduction metamorphic products and oceanic crust relics, And it is an ideal region to study the ocean-continent transition and exhumation mechanism of oceanic UHP rocks during continental deep subduction process. In this paper, we report integrated in situ U-Pb, Lu-Hf and O isotope analyses of zircons from a serpentinized harzburgite as well as U-Pb dating for zircons from a kyanite eclogite from the North Qaidam Dulan UHPM terrane, and use these data to discuss the ocean-continent transition and exhumation mechanisms of oceanic UHP rocks during continental deep subduction. The serpentinized harzburgite was dated at 448±9 Ma, consistent with 455±5 Ma age for the kyanite eclogite within analytical errors. Zircons from the serpentinized harzburgite have uniform 176Hf/177 Hf values ranging from 0.282 842 to 0.282 883 and εHf(t) values from 11.6 to 13.3. Zircon δ^18O values of the serpentinized harzburgite vary from 4.47‰ to 5.29‰, slightly lower than the value of 5.3‰±0.6‰ for the normal mantle zircon. These Hf-O isotopic features indicate that the protolith of the serpentinized harzburgite was derived from depleted-mantle source, and might have experienced high-temperature rock-water interaction. Therefore, the serpentinized harzburgite was possibly located in the lower part of an oceanic section. The serpentinized harzburgite and kyanite eclogite were both formed due to the subduction of oceanic crust. The UHP metamorphism occurred successively from the oceanic crust to continental crust rocks of the North Qaidam UHP terrane. Low-density serpentinized peridotite and continental rocks possibly have negative buoyancy and play a key effect on preservation and exhumation of high-density oceanic eclogite.展开更多
基金Key Research Program of Frontier Sciences of CAS(ZDBS-LY-DQC015)National Natural Science Foundation of China(Nos.41973056,41773056,41303048)Science Foundation of Guizhou Province(2017-1196,2018-1176).
文摘Thermal diffusivity(D)and thermal conductivity(κ)of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus.The results show that the values of D andκof both samples systematically decrease with increasing temperature and increase with increasing pressure.By combination of the thermal physical data of rocks and minerals and geophysical constraints,we performed numerical simulation on the thermal evolution of Tibet vary over depth,distance and geologic ages.The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.
基金supported by a Vinci grant (Italian-French University) and by Italian-PRIN prot.2015C5LN35
文摘The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.
基金funded by the National Key Research and Development Program of China(No.2018YFC0309903)the Scientific Research Fund of the Second Institute of Oceanography,MNR(No.QNYC1701)+1 种基金the China Ocean Mineral Resources R&D Association Project(No.DY135-S2-1-02&05)the National Science Foundation of China(No.41976076)
文摘Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow-to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes.The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge,Northwest Indian Ocean.Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m(3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field.Calcite veins Ⅰ occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite,while calcite veins Ⅱ precipitate within the mesh texture in the relatively weaker serpentinized harzburgite.Both veins show similar δ13CPDB(+0.54‰ and +0.58‰) but different δ18OPDB(-16.67‰ and +4.46‰) values,suggesting that they were derived from the same carbon source but precipitated at different temperatures.Taking the deep seawater temperature of 2℃as the precipitation temperature of the calcite veins I,the equilibrium δ18OV-SMOW of calcite-precipitating fluid was calculated to be 1.78‰,which is close to the average δ18OV-SMOW value(1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide.The formation temperature of calcite veins Ⅱ is inferred to be approximately 134℃,based on the calculated δ18OV-SMOW above.The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow.The low-temperature calcite postdates the mesh texture,while the high-temperature calcite may precipitate under relatively low water/rock ratios,alkaline and reduced conditions among the mesh texture,which is revealed by the geochemical models.Therefore,it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.
基金supported by the National Programme on Global Change and Air-Sea Interaction (No. GASI-GEOGE-02)the National Nature Science Foundation of China (Nos. 41772040,91858104)the Fundamental Research Funds for the Central Universities,Hohai University (No. 2013/B18020030)。
文摘Reactions between a boninitic or basaltic magma and harzburgite at shallow mantle depths are thought to be closely related to the formation of podiform chromitites,but little experimental data is available on these reactions.In this study,a series of experiments were conducted at 1.5GPa and 1 000–1 400 oC to investigate the interactions between boninitic magma and harzburgite in homogenous mixed systems with varied bulk concentrations of water(~0.7 wt.%–10 wt.%)and Cr2O3(~0.2 wt.%–4 wt.%).In the experimental charges,chromite grains can be observed coexisting with orthopyroxene,clinopyroxene±olivine,and quenched melt in the Cr-bearing systems.The bulk concentration of Cr2O3 in the starting material has a slight effect on compositional changes in the chromites generated.However,the Cr#(Cr#=100×Cr/(Cr+Al))and Mg#(Mg#=100×Mg/(Mg+Fe))values for the chromites exhibit positive and negative correlations,respectively,with the bulk H2O concentrations.At 1 100 oC,chromite Cr#values range from^33–35 to^58–65,and chromite Mg#values range from^70–73 to^55–58when bulk H2O contents in the starting material are increased from^0.7 wt.%to^10 wt.%.The experimentally produced chromites have compositions(as expressed by Cr#,Mg#,and Ni O and Mn O contents)similar to natural chromites from low-Cr#chromitite bodies.We suggest that the interactions between boninitic magmas with varied H2O contents and harzburgite in a shallow mantle wedge could be a possible mechanism that forms the low-Cr#chromitites found in ophiolites.We emphasize here that H2O may play an important role in the compositional evolutions of natural chromitites.
基金financially supported by the National Natural Science Foundation of China(92062215,41720104009,42172069)the China Geological Survey(DD20221886,DD20221817,DD20221657,DD20230340,DD20221630)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0801)。
文摘The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.
基金financially supported by the NSFC(grant no.41430207, 41602340)China Postdoctoral Science Foundation ( 2016M591246)
文摘Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.
基金Supported in part by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences (Grant No.KZCX3-SW-223)the National Natural Science Foundation of China (Grant Nos. 40376020 and 40176020)the Special Founda-tion for the Tenth Five Plan of COMRA (Grant No. DY105-01-03-1)
文摘Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amphibole are found in these harzburgites: magnesiohornblende accompanied by clinopy-roxene with higher Al2O3 content (>7%) and lower Mg#; tremolite around orthopyroxene with lower Al2O3 content (< 2%) and higher Mg#. Trace element of clinopyroxene and two types of amphibole are ana-lyzed. Primitive mantle-normalised REE patterns for clinopyroxene and magnesio hornblende are very similar and both show HREE enrichment relative to LREE,while magnesiohornblende has higher con-tent of trace element than clinopyroxene. The contents of trace element of tremolite are much lower than those of magnesiohornblende. Clinopyroxene shows enrichment of most of the trace element except HREE and Ti relative to clinopyroxene in abyssal peridotites. Petrology and trace element characteristic of clinopyroxene and two types of amphibole indicate that southern Mariana fore-arc harzburgites underwent two stages of metasomatism. The percolation of a hydrous melt led to mobility of Al,Ca,Fe,Mg,Na,and large amounts of trace element. LILE and LREE can be more active in hydrous melt than HREE and Ti,and the activities of most of the trace element except some of LILE are influ-enced by temperature and pressure.
文摘The North Qaidam UHPM(ultra-high pressure metamorphism) belt is a typical continental subduction-collision belt containing continental crust deep subduction metamorphic products and oceanic crust relics, And it is an ideal region to study the ocean-continent transition and exhumation mechanism of oceanic UHP rocks during continental deep subduction process. In this paper, we report integrated in situ U-Pb, Lu-Hf and O isotope analyses of zircons from a serpentinized harzburgite as well as U-Pb dating for zircons from a kyanite eclogite from the North Qaidam Dulan UHPM terrane, and use these data to discuss the ocean-continent transition and exhumation mechanisms of oceanic UHP rocks during continental deep subduction. The serpentinized harzburgite was dated at 448±9 Ma, consistent with 455±5 Ma age for the kyanite eclogite within analytical errors. Zircons from the serpentinized harzburgite have uniform 176Hf/177 Hf values ranging from 0.282 842 to 0.282 883 and εHf(t) values from 11.6 to 13.3. Zircon δ^18O values of the serpentinized harzburgite vary from 4.47‰ to 5.29‰, slightly lower than the value of 5.3‰±0.6‰ for the normal mantle zircon. These Hf-O isotopic features indicate that the protolith of the serpentinized harzburgite was derived from depleted-mantle source, and might have experienced high-temperature rock-water interaction. Therefore, the serpentinized harzburgite was possibly located in the lower part of an oceanic section. The serpentinized harzburgite and kyanite eclogite were both formed due to the subduction of oceanic crust. The UHP metamorphism occurred successively from the oceanic crust to continental crust rocks of the North Qaidam UHP terrane. Low-density serpentinized peridotite and continental rocks possibly have negative buoyancy and play a key effect on preservation and exhumation of high-density oceanic eclogite.