BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation gr...BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.展开更多
文摘背景:腰椎小关节炎是引起下腰痛的一个主要原因,目前主要依靠MRI进行初步定性诊断,但仍有一定漏诊、误诊的概率发生,因此MR T2^(*)mapping成像技术有望成为定量检查腰椎小关节炎软骨损伤的重要检测手段。目的:探讨MR T2^(*)mapping成像技术在定量分析腰椎小关节炎软骨损伤退变中的应用价值。方法:收集南京医科大学第四附属医院2020年4月至2022年3月门诊或住院合并下腰痛共110例患者,设为病例组;同时招募无症状志愿者80例,设为对照组。对所有纳入对象L1-S1的小关节行3.0 T MR扫描,获取T2^(*)mapping横断位图像和T2WI图像,分别对所有小关节软骨进行Weishaupt分级及T2^(*)值测量,收集数据并行统计学分析。不同小关节Weishaupt分级之间小关节软骨T2^(*)值比较采用单因素方差分析。结果与结论:①经统计分析发现,病例组腰椎小关节软骨T2^(*)值(17.6±1.5)ms明显较对照组(21.4±1.3)ms降低,差异有显著性意义(P<0.05);②在病例组中,随着腰椎小关节Weishaupt分级增加,小关节软骨T2^(*)值也呈逐渐下降趋势,且这种差异有显著性意义(P<0.05);③提示T2^(*)mapping能够较好地显示腰椎小关节软骨损伤的早期病理变化,腰椎小关节软骨的T2^(*)值能够定量评估腰椎小关节的软骨损伤程度;T2^(*)mapping成像技术能为影像学诊断腰椎小关节炎软骨早期损伤提供很好的理论依据,具有重要的临床应用价值。
基金the Fujian Province Clinical Key Specialty Construction Project,No.2022884Quanzhou Science and Technology Plan Project,No.2021N034S+1 种基金The Youth Research Project of Fujian Provincial Health Commission,No.2022QNA067Malignant Tumor Clinical Medicine Research Center,No.2020N090s.
文摘BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.