An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson p...An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson processes(NHPPs).The arrival rate of each NHPP corresponds to the system software failure rate which is expressed using Cox s proportional hazards model(PHM)in terms of the cumulative and instantaneous load of the software.The cumulative load refers to software cumulative execution time,and the instantaneous load denotes the rate that the users requests arrive at a server.The result of reliability analysis is a time-varying reliability and degradation process over the WSC lifetime.Finally,the evaluation experiment shows the effectiveness of the proposed approach.展开更多
This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco...This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.展开更多
Penalized empirical likelihood inferential procedure is proposed for Cox's pro- portional hazards model with adaptive LASSO(ALASSO). Under reasonable conditions, we show that the proposed method has oracle property...Penalized empirical likelihood inferential procedure is proposed for Cox's pro- portional hazards model with adaptive LASSO(ALASSO). Under reasonable conditions, we show that the proposed method has oracle property and the limiting distribution of a penal- ized empirical likelihood ratio via ALASSO is a chi-square distributions. The advantage of penalized empirical likelihood is illustrated in testing hypothesis and constructing confidence sets by simulation studies and a real example.展开更多
Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, ther...Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, there exist two types of hazards models: the multiplicative hazards model and the additive hazards model. In the paper, we propose a more flexible additive-multiplicative hazards model for multiple type of recurrent gap times data, wherein some covariates are assumed to be additive while others are multiplicative. An estimating equation approach is presented to estimate the regression parameters. We establish asymptotic properties of the proposed estimators.展开更多
Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical informatio...Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time.Besides,it is well known that Cox's proportional hazards model is the most commonly used model for regression analysis of failure time.In this paper,the authors consider doing the exclusive hypothesis testing for Cox's proportional hazards model with right-censored data.The authors propose the comprehensive test statistics to make decision,and show that the corresponding decision rule can control the asymptotic TypeⅠerrors and have good powers in theory.The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Rotterdam Breast Cancer Data study that motivated this study.展开更多
OBJECTIVE: To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection. METHODS: A retrospective analysis was performed on 86 cases of b...OBJECTIVE: To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection. METHODS: A retrospective analysis was performed on 86 cases of bile duct carcinoma treated from January 1981 to September 1995. Fifteen clinicopathologic factors that could possibly influence survival were selected. A multivariate analysis of these individuals was performed using the Cox Proportional Hazards Model. RESULTS: The overall cumulative survival rate was 73% for 1 year, 32% for 3 years and 19% for 5 years. The results of univariate analysis showed that the major significant prognostic factors for influencing survival of these patients were type of histological lesion, lymph node metastasis, pancreatic invasion, duodenal invasion, perineural invasion, macroscopic vessel involvement, resected surgical margin and depth of cancer invasion (P展开更多
To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection Methods A retrospective analysis was performed on 86 cases of bile duct ca...To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection Methods A retrospective analysis was performed on 86 cases of bile duct carcinoma treated from January 1981 to September 1995 Fifteen clinicopathologic factors that could possibly influence survival were selected A multivariate analysis of these individuals was performed using the Cox Proportional Hazards Model Results The overall cumulative survival rate was 73% for 1 year, 32% for 3 years and 19% for 5 years The results of univariate analysis showed that the major significant prognostic factors for influencing survival of these patients were type of histological lesion, lymph node metastasis, pancreatic invasion, duodenal invasion, perineural invasion, macroscopic vessel involvement, resected surgical margin and depth of cancer invasion ( P 【0 05) Pancreatic invasion, perineural invasion and lymph node metastases were the three most important prognostic factors determined by multivariate analysis using the Cox Proportional Hazards Model Conclusion Pancreatic invasion, perineural invasion and lymph node metastases are the most important prognostic factors for bile duct carcinoma after curative resection展开更多
The smooth integration of counting and absolute deviation (SICA) penalized variable selection procedure for high-dimensional linear regression models is proposed by Lv and Fan (2009). In this article, we extend th...The smooth integration of counting and absolute deviation (SICA) penalized variable selection procedure for high-dimensional linear regression models is proposed by Lv and Fan (2009). In this article, we extend their idea to Cox's proportional hazards (PH) model by using a penalized log partial likelihood with the SICA penalty. The number of the regression coefficients is allowed to grow with the sample size. Based on an approximation to the inverse of the Hessian matrix, the proposed method can be easily carried out with the smoothing quasi-Newton (SQN) algorithm. Under appropriate sparsity conditions, we show that the resulting estimator of the regression coefficients possesses the oracle property. We perform an extensive simulation study to compare our approach with other methods and illustrate it on a well known PBC data for predicting survival from risk factors.展开更多
In this article, clustered recurrent gap time is investigated. A marginal additive haz- ards model is proposed without specifying the association of the individuals within the same cluster. The relationship among the ...In this article, clustered recurrent gap time is investigated. A marginal additive haz- ards model is proposed without specifying the association of the individuals within the same cluster. The relationship among the gap times for the same individual is also left unspecified. An estimating equation-based inference procedure is developed for the model parameters, and the asymptotic proper- ties of the resulting estimators are established. In addition, a lack-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease (CGD) is illustrated.展开更多
Case-cohort design is an efficient and economical design to study risk factors for diseases with expensive measurements, especially when the disease rate is low. When several diseases are of interest, multiple case-co...Case-cohort design is an efficient and economical design to study risk factors for diseases with expensive measurements, especially when the disease rate is low. When several diseases are of interest, multiple case-cohort design studies may be conducted using the same subcohort. To study the association between risk factors and each disease occurrence or death, we consider a general additive-multiplicative hazards model for case-cohort designs with multiple disease outcomes. We present an estimation procedure for the regression parameters of the additive-multiplicative hazards model, and show that the proposed estimator is consistent and asymptotically normal. Large sample approximation works well in finite sample studies in simulation. Finally, we apply the proposed method to a real data example for illustration.展开更多
Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parame...Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parameters in Cox's proportional hazards model in generalized case-cohort design and establish an optimal sample size allocation to achieve the maximum power at a given budget. The finite sample performance of the proposed method is evaluated through simulation studies. The proposed method is applied to a real data set from the National Wilm's Tumor Study Group.展开更多
Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to a...Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.展开更多
Case-cohort study designs are widely used to reduce the cost of large cohort studies. When several diseases are of interest, we can use the same subcohort. In this paper, we will study the casecohort design of margina...Case-cohort study designs are widely used to reduce the cost of large cohort studies. When several diseases are of interest, we can use the same subcohort. In this paper, we will study the casecohort design of marginal additive hazards model for multiple outcomes by a more efficient version. Instead of analyzing each disease separately, ignoring the additional exposure measurements collected on subjects with other diseases, we propose a new weighted estimating equation approach to improve the efficiency by utilizing as much information collected as possible. The consistency and asymptotic normality of the resulting estimator are established. Simulation studies are conducted to examine the finite sample performance of the proposed estimator, which confirm the efficiency gains.展开更多
Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consi...Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.展开更多
Many survival studies record the times to two or more distinct failures oneach subject. The failures may be events of different natures or may be repetitions of the same kindof event. In this article, we consider the ...Many survival studies record the times to two or more distinct failures oneach subject. The failures may be events of different natures or may be repetitions of the same kindof event. In this article, we consider the regression analysis of such multivariate failure timedata under the additive hazards model. Simple weighted estimating functions for the regressionparameters are proposed, and asymptotic distribution theory of the resulting estimators are derived.In addition, a class of generalized Wald and generalized score statistics for hypothesis testingand model selection are presented, and the asymptotic properties of these statistics are examined.展开更多
The Cox proportional hazards model is the most used statistical model in the analysis of survival time data.Recently,a random weighting method was proposed to approximate the distribution of the maximum partial likeli...The Cox proportional hazards model is the most used statistical model in the analysis of survival time data.Recently,a random weighting method was proposed to approximate the distribution of the maximum partial likelihood estimate for the regression coefficient in the Cox model.This method was shown not as sensitive to heavy censoring as the bootstrap method in simulation studies but it may not be second-order accurate as was shown for the bootstrap approximation.In this paper,we propose an alternative random weighting method based on one-step linear jackknife pseudo values and prove the second accuracy of the proposed method.Monte Carlo simulations are also performed to evaluate the proposed method for fixed sample sizes.展开更多
Rare event data is encountered when the events of interest occur with low frequency, and the estimators based on the cohort data only may be inefficient. However, when external information is available for the estimat...Rare event data is encountered when the events of interest occur with low frequency, and the estimators based on the cohort data only may be inefficient. However, when external information is available for the estimation, the estimators utilizing external information can be more efficient. In this paper, we propose a method to incorporate external information into the estimation of the baseline hazard function and improve efficiency for estimating the absolute risk under the additive hazards model. The resulting estimators are shown to be uniformly consistent and converge weakly to Gaussian processes. Simulation studies demonstrate that the proposed method is much more efficient. An application to a bone marrow transplant data set is provided.展开更多
Missing covariate data arise frequently in biomedical studies.In this article,we propose a class of weighted estimating equations for the additive hazards regression model when some of the covariates are missing at ra...Missing covariate data arise frequently in biomedical studies.In this article,we propose a class of weighted estimating equations for the additive hazards regression model when some of the covariates are missing at random.Time-specific and subject-specific weights are incorporated into the formulation of weighted estimating equations.Unified results are established for estimating selection probabilities that cover both parametric and non-parametric modelling schemes.The resulting estimators have closed forms and are shown to be consistent and asymptotically normal.Simulation studies indicate that the proposed estimators perform well for practical settings.An application to a mouse leukemia study is illustrated.展开更多
In survival analysis,data are frequently collected by some complex sampling schemes,e.g.,length biased sampling,case-cohort sampling and so on.In this paper,we consider the additive hazards model for the general biase...In survival analysis,data are frequently collected by some complex sampling schemes,e.g.,length biased sampling,case-cohort sampling and so on.In this paper,we consider the additive hazards model for the general biased survival data.A simple and unified estimating equation method is developed to estimate the regression parameters and baseline hazard function.The asymptotic properties of the resulting estimators are also derived.Furthermore,to check the adequacy of the fitted model with general biased survival data,we present a test statistic based on the cumulative sum of the martingale-type residuals.Simulation studies are conducted to evaluate the performance of proposed methods,and applications to the shrub and Welsh Nickel Refiners datasets are given to illustrate the methodology.展开更多
In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for c...In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for censored survival data in the additive hazards model when covariates are grouped.A hierarchical regularization method is proposed to simultaneously estimate parameters and select important variables at both the group level and the within-group level.For the situations in which the number of parameters tends to∞as the sample size increases,we establish an oracle property and asymptotic normality property of the proposed estimators.Numerical results indicate that the hierarchically penalized method performs better than some existing methods such as lasso,smoothly clipped absolute deviation(SCAD)and adaptive lasso.展开更多
基金The National Natural Science Foundation of China(No.61402333,61402242)the National Science Foundation of Tianjin(No.15JCQNJC00400)
文摘An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson processes(NHPPs).The arrival rate of each NHPP corresponds to the system software failure rate which is expressed using Cox s proportional hazards model(PHM)in terms of the cumulative and instantaneous load of the software.The cumulative load refers to software cumulative execution time,and the instantaneous load denotes the rate that the users requests arrive at a server.The result of reliability analysis is a time-varying reliability and degradation process over the WSC lifetime.Finally,the evaluation experiment shows the effectiveness of the proposed approach.
基金supported by the Fundamental Research Funds for the Central Universities (QN0914)
文摘This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.
文摘Penalized empirical likelihood inferential procedure is proposed for Cox's pro- portional hazards model with adaptive LASSO(ALASSO). Under reasonable conditions, we show that the proposed method has oracle property and the limiting distribution of a penal- ized empirical likelihood ratio via ALASSO is a chi-square distributions. The advantage of penalized empirical likelihood is illustrated in testing hypothesis and constructing confidence sets by simulation studies and a real example.
基金The Science Foundation(JA12301)of Fujian Educational Committeethe Teaching Quality Project(ZL0902/TZ(SJ))of Higher Education in Fujian Provincial Education Department
文摘Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, there exist two types of hazards models: the multiplicative hazards model and the additive hazards model. In the paper, we propose a more flexible additive-multiplicative hazards model for multiple type of recurrent gap times data, wherein some covariates are assumed to be additive while others are multiplicative. An estimating equation approach is presented to estimate the regression parameters. We establish asymptotic properties of the proposed estimators.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971064,12371262,and 12171374。
文摘Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time.Besides,it is well known that Cox's proportional hazards model is the most commonly used model for regression analysis of failure time.In this paper,the authors consider doing the exclusive hypothesis testing for Cox's proportional hazards model with right-censored data.The authors propose the comprehensive test statistics to make decision,and show that the corresponding decision rule can control the asymptotic TypeⅠerrors and have good powers in theory.The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Rotterdam Breast Cancer Data study that motivated this study.
文摘OBJECTIVE: To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection. METHODS: A retrospective analysis was performed on 86 cases of bile duct carcinoma treated from January 1981 to September 1995. Fifteen clinicopathologic factors that could possibly influence survival were selected. A multivariate analysis of these individuals was performed using the Cox Proportional Hazards Model. RESULTS: The overall cumulative survival rate was 73% for 1 year, 32% for 3 years and 19% for 5 years. The results of univariate analysis showed that the major significant prognostic factors for influencing survival of these patients were type of histological lesion, lymph node metastasis, pancreatic invasion, duodenal invasion, perineural invasion, macroscopic vessel involvement, resected surgical margin and depth of cancer invasion (P
文摘To evaluate the influence of various clinicopathologic factors on the survival of patients with bile duct carcinoma after curative resection Methods A retrospective analysis was performed on 86 cases of bile duct carcinoma treated from January 1981 to September 1995 Fifteen clinicopathologic factors that could possibly influence survival were selected A multivariate analysis of these individuals was performed using the Cox Proportional Hazards Model Results The overall cumulative survival rate was 73% for 1 year, 32% for 3 years and 19% for 5 years The results of univariate analysis showed that the major significant prognostic factors for influencing survival of these patients were type of histological lesion, lymph node metastasis, pancreatic invasion, duodenal invasion, perineural invasion, macroscopic vessel involvement, resected surgical margin and depth of cancer invasion ( P 【0 05) Pancreatic invasion, perineural invasion and lymph node metastases were the three most important prognostic factors determined by multivariate analysis using the Cox Proportional Hazards Model Conclusion Pancreatic invasion, perineural invasion and lymph node metastases are the most important prognostic factors for bile duct carcinoma after curative resection
基金Supported by the National Natural Science Foundation of China(No.11171263)
文摘The smooth integration of counting and absolute deviation (SICA) penalized variable selection procedure for high-dimensional linear regression models is proposed by Lv and Fan (2009). In this article, we extend their idea to Cox's proportional hazards (PH) model by using a penalized log partial likelihood with the SICA penalty. The number of the regression coefficients is allowed to grow with the sample size. Based on an approximation to the inverse of the Hessian matrix, the proposed method can be easily carried out with the smoothing quasi-Newton (SQN) algorithm. Under appropriate sparsity conditions, we show that the resulting estimator of the regression coefficients possesses the oracle property. We perform an extensive simulation study to compare our approach with other methods and illustrate it on a well known PBC data for predicting survival from risk factors.
基金supported by the National Natural Science Foundation of China under Grant Nos.11501037,11771431,and 11690015
文摘In this article, clustered recurrent gap time is investigated. A marginal additive haz- ards model is proposed without specifying the association of the individuals within the same cluster. The relationship among the gap times for the same individual is also left unspecified. An estimating equation-based inference procedure is developed for the model parameters, and the asymptotic proper- ties of the resulting estimators are established. In addition, a lack-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease (CGD) is illustrated.
基金partly supported by the Natural Science Research Project of Universities of Anhui Province(No.KJ2016B026)partly supported by the National Natural Science Foundation of China Grants(No.11301355)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Personnel of Beijing,China
文摘Case-cohort design is an efficient and economical design to study risk factors for diseases with expensive measurements, especially when the disease rate is low. When several diseases are of interest, multiple case-cohort design studies may be conducted using the same subcohort. To study the association between risk factors and each disease occurrence or death, we consider a general additive-multiplicative hazards model for case-cohort designs with multiple disease outcomes. We present an estimation procedure for the regression parameters of the additive-multiplicative hazards model, and show that the proposed estimator is consistent and asymptotically normal. Large sample approximation works well in finite sample studies in simulation. Finally, we apply the proposed method to a real data example for illustration.
基金Supported in part by the Central Universities under Grant No.31541311216,2042014kf0256the National Natural Science Foundation of China under Grant No.11171263,11301545,61371126 and 11401443
文摘Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parameters in Cox's proportional hazards model in generalized case-cohort design and establish an optimal sample size allocation to achieve the maximum power at a given budget. The finite sample performance of the proposed method is evaluated through simulation studies. The proposed method is applied to a real data set from the National Wilm's Tumor Study Group.
基金Supported by the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities(16JJD910002)supported by the State Key Program of National Natural Science Foundation of China(71331006)+3 种基金the State Key Program in the Major Research Plan of National Natural Science Foundation of China(91546202)National Center for Mathematics and Interdisciplinary Sciences(NCMIS)Key Laboratory of RCSDS,AMSS,CAS(2008DP173182)Innovative Research Team of Shanghai University of Finance and Economics(IRTSHUFE13122402)
文摘Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.
基金supported by Graduate Innovation Foundation of Shanghai University of Finance and Economics,China(Grant No.CXJJ2014-453)the second author is supported by National Natural Science Foundation of China(Grant No.11301355)+1 种基金the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Personnel of BeijingChina
文摘Case-cohort study designs are widely used to reduce the cost of large cohort studies. When several diseases are of interest, we can use the same subcohort. In this paper, we will study the casecohort design of marginal additive hazards model for multiple outcomes by a more efficient version. Instead of analyzing each disease separately, ignoring the additional exposure measurements collected on subjects with other diseases, we propose a new weighted estimating equation approach to improve the efficiency by utilizing as much information collected as possible. The consistency and asymptotic normality of the resulting estimator are established. Simulation studies are conducted to examine the finite sample performance of the proposed estimator, which confirm the efficiency gains.
基金supported in part by Natural Science Foundation of Hubei(08BA164)Major Research Program of Hubei Provincial Department of Education(09B2001)+2 种基金supported in part by National Natural Science Foundation of China(1117112)Doctoral Fund of Ministry of Education of China(20090076110001)National Statistical Science Research Major Program of China(2011LZ051)
文摘Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.
基金Supported by the National Natural Science Foundation of China (No. 10471140)Science Foundation of HUBEI (98j081)Scientific Research Great Project of Education Department of HUBEI (2002Z04001).supported by grants from Research Grants Council of
文摘Many survival studies record the times to two or more distinct failures oneach subject. The failures may be events of different natures or may be repetitions of the same kindof event. In this article, we consider the regression analysis of such multivariate failure timedata under the additive hazards model. Simple weighted estimating functions for the regressionparameters are proposed, and asymptotic distribution theory of the resulting estimators are derived.In addition, a class of generalized Wald and generalized score statistics for hypothesis testingand model selection are presented, and the asymptotic properties of these statistics are examined.
基金supported by Natural Science and Engineering Research Council of Canada and National Natural Science Foundation of China (Grant No. 10871188)
文摘The Cox proportional hazards model is the most used statistical model in the analysis of survival time data.Recently,a random weighting method was proposed to approximate the distribution of the maximum partial likelihood estimate for the regression coefficient in the Cox model.This method was shown not as sensitive to heavy censoring as the bootstrap method in simulation studies but it may not be second-order accurate as was shown for the bootstrap approximation.In this paper,we propose an alternative random weighting method based on one-step linear jackknife pseudo values and prove the second accuracy of the proposed method.Monte Carlo simulations are also performed to evaluate the proposed method for fixed sample sizes.
基金partly supported by the National Natural Science Foundation of China(No.11690015,11301355,11671275,11771431 and 71501016)Key Laboratory of RCSDS,CAS(No.2008DP173182)+1 种基金Qin Xin Talents Cultivation Program(QXTCP B201705)Beijing Information Science&Technology University
文摘Rare event data is encountered when the events of interest occur with low frequency, and the estimators based on the cohort data only may be inefficient. However, when external information is available for the estimation, the estimators utilizing external information can be more efficient. In this paper, we propose a method to incorporate external information into the estimation of the baseline hazard function and improve efficiency for estimating the absolute risk under the additive hazards model. The resulting estimators are shown to be uniformly consistent and converge weakly to Gaussian processes. Simulation studies demonstrate that the proposed method is much more efficient. An application to a bone marrow transplant data set is provided.
基金supported by National Natural Science Foundation of China(Grant Nos.11771431,11690015,11926341,11601080 and 11671275)Key Laboratory of Random Complex Structures and Data Science,Chinese Academy of Sciences(Grant No.2008DP173182)the Fundamental Research Funds for the Central Universities in University of International Business and Economics(Grant No.CXTD10-09)。
文摘Missing covariate data arise frequently in biomedical studies.In this article,we propose a class of weighted estimating equations for the additive hazards regression model when some of the covariates are missing at random.Time-specific and subject-specific weights are incorporated into the formulation of weighted estimating equations.Unified results are established for estimating selection probabilities that cover both parametric and non-parametric modelling schemes.The resulting estimators have closed forms and are shown to be consistent and asymptotically normal.Simulation studies indicate that the proposed estimators perform well for practical settings.An application to a mouse leukemia study is illustrated.
文摘In survival analysis,data are frequently collected by some complex sampling schemes,e.g.,length biased sampling,case-cohort sampling and so on.In this paper,we consider the additive hazards model for the general biased survival data.A simple and unified estimating equation method is developed to estimate the regression parameters and baseline hazard function.The asymptotic properties of the resulting estimators are also derived.Furthermore,to check the adequacy of the fitted model with general biased survival data,we present a test statistic based on the cumulative sum of the martingale-type residuals.Simulation studies are conducted to evaluate the performance of proposed methods,and applications to the shrub and Welsh Nickel Refiners datasets are given to illustrate the methodology.
基金supported by National Natural Science Foundation of China(Grant Nos.11171112,11101114 and 11201190)National Statistical Science Research Major Program of China(Grant No.2011LZ051)
文摘In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for censored survival data in the additive hazards model when covariates are grouped.A hierarchical regularization method is proposed to simultaneously estimate parameters and select important variables at both the group level and the within-group level.For the situations in which the number of parameters tends to∞as the sample size increases,we establish an oracle property and asymptotic normality property of the proposed estimators.Numerical results indicate that the hierarchically penalized method performs better than some existing methods such as lasso,smoothly clipped absolute deviation(SCAD)and adaptive lasso.