In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
Accurate and reliable river flow information is critical to planning and management for sustainable water resources utilization. Most of engineering activities related to hydrologic designs, flood, drought, reservoirs...Accurate and reliable river flow information is critical to planning and management for sustainable water resources utilization. Most of engineering activities related to hydrologic designs, flood, drought, reservoirs and their operations are heavily dependent on the river flow information derived from river rating curve. The rating curve for a given river section is normally developed from a set of direct stage-discharge measurements for different periods. This involves considerable labour, risk and resources, and presupposes a complex and extensive measuring survey. Extrapolating the rating curve beyond the measured range, as common in many cases, is fraught with errors and uncertainties, due to the complex hydraulic behaviour of the surface water profile in transition from section, channel, downstream and flood plain controls which are often poorly understood with direct measurements. Hydraulic modeling has recently emerged as one of the more promising methods to efficiently develop accurate rating curves for a river section with simple or complex hydraulic structures and conditions. This paper explores the use of a Hydraulic Engineering Center-River Analysis System (HEC-RAS) model to review and develop river rating curves for three hydrometric stations on two rivers in Kwale, coastal Kenya. The HEC-RAS models were set up based on topographical (cross section and longitudinal) survey data for the reaches and engineering drawings for the hydraulic structures commonly used as section controls for flow measurement. The model was calibrated under unsteady state conditions against measured stage-discharge data which were captured using a Velocity Current Meter (Valeport) and an Acoustic Doppler Current Profiler (ADCP) for both low and high flow. The rating curves were extracted from model results and the uncertainty associated with each rating curve analyzed. The results obtained by the HEC-RAS model were satisfactory and deemed acceptable for predicting discharge across the stage range at each river section.展开更多
It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under ra...It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used...The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used to approximate the curved beam have better accuracy than the straight beam clement. The curved beam element constructed by displacement method can not satisfy rigid body motion condition and the very fine grids have to be used in order to satisfy rigid body motion condition approxtmately.In this paper it is proved that the straight beam element and the quasi-conforming element of the curved beam and shallow curved beam, when element size is reduced infinitely, have convergence rate with the same order O(l2) and when regular elements are used. I is the element length.展开更多
Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study,...Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.展开更多
AIM: To determine the learning curves for antegrade double-balloon enteroscopy (aDBE) and retrograde DBE (rDBE) by analyzing the technical success rates. METHODS: A retrospective analysis in a tertiary referral center...AIM: To determine the learning curves for antegrade double-balloon enteroscopy (aDBE) and retrograde DBE (rDBE) by analyzing the technical success rates. METHODS: A retrospective analysis in a tertiary referral center. This study reviewed all cases from June 2006 to April 2011 with a target lesion in the small-bowel identified by either capsule endoscopy or computed tomography scan posted for DBE examinations. Main outcome measurements were: (1) Technical success of aDBE def ined by f inding or excluding a target lesion after achieving suff icient length of small bowel intubation; and (2) Technical success for rDBE was def ined by either f inding the target lesion or achieving stable overtube placement in the ileum. RESULTS: Two hundred and eighty two procedures fulf illed the inclusion criteria and were analyzed. These procedures were analyzed by blocks of 30 cases. Therewas no distinct learning curve for aDBE. Technical success rates for rDBE continued to rise over time, although on logistic regression analysis testing for trend, there was no signif icance (P = 0.09). The odds of success increased by a factor of 1.73 (95% CI: 0.93-3.22) for rDBE. For these data, it was estimated that at least 30-35 cases of rDBE under supervision were needed to achieve a good technical success of more than 75%. CONCLUSION: There was no learning curve for aDBE. Technical success continued to increase over time for rDBE, although a learning curve could not be proven statistically. Approximately 30-35 cases of rDBE will be required for stable overtube intubation in ileum.展开更多
Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data ...Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data is available. The objectives of this study were to test the performance of a suite of regression models in predicting continuous water quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which includes several predefined regression models that specify the model form and complexity. Water quality data primarily nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from observation (“true” load) by -1% to 9%, but for the Total Phosphorus (TP) it ranged from -2% to 27%. Statistical evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in prediction.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn ...The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.展开更多
Hydraulic structure is designed based on hydraulic theories or guidelines. To ensure performance, physical model tests are often used at high discharges. However, high discharge in river is rare. Physical model tests ...Hydraulic structure is designed based on hydraulic theories or guidelines. To ensure performance, physical model tests are often used at high discharges. However, high discharge in river is rare. Physical model tests at high discharges will probably lead biased hydrological relationship. To improve hydrological relationship at low discharges, in this study, we considered the diversion rating curve of the Yuanshanzi Diversion Work. The 1/100-scaled physical model tests at low and high discharges (90 - 1620 m3/s) were performed and coupled the diversion discharges of 5 flood events (2009-2010) in field. The official diversion rating curve was built only based on physical model tests at high discharges (837 - 1620 m3/s). The results of physical model tests in this study suggested the official diversion rating curve should be modified considering all tests. The modifications showed the official diversion rating curve was over-estimated. A complete series of physical model tests and considering field situations, in this study, indicated expanded physical model tests and constantly field measurements were therefore necessary for hydraulic structure, which provided information to modify used hydrological relationship to fit real situations.展开更多
A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-...A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.展开更多
On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘prob...On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.展开更多
In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line...In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line search methods are based on finding a new iterate on a line starting from the current iterate at each iteration. The global convergence and linear convergence rate of these curve search methods are investigated under some mild conditions. Numerical results show that some curve search methods are stable and effective in solving some large scale minimization problems.展开更多
Verifiable secret sharing is a special kind of secret sharing. In this paper, A secure and efficient threshold secret sharing scheme is proposed by using the plane parametric curve on the basis of the principle of sec...Verifiable secret sharing is a special kind of secret sharing. In this paper, A secure and efficient threshold secret sharing scheme is proposed by using the plane parametric curve on the basis of the principle of secret sharing. And the performance of this threshold scheme is analyzed. The results reveal that the threshold scheme has its own advantage of one-parameter representation for a master key, and it is a perfect ideal secret sharing scheme. It can easily detect cheaters by single operation in the participants so that the probability of valid cheating is less than 1/<em>p</em> (where <em>p</em> is a large prime).展开更多
In this paper, the age-specific population of Bangladesh based on a linear first order (hyperbolic) partial differential equation which is known as Von-Foerster Equation is studied. Applying quadratic polynomial curve...In this paper, the age-specific population of Bangladesh based on a linear first order (hyperbolic) partial differential equation which is known as Von-Foerster Equation is studied. Applying quadratic polynomial curve fitting, the total population and population density of Bangladesh are projected for the years 2001 to 2050 based on the explicit upwind finite difference scheme for the age-structured population model based on given data (source: BBS & ICDDR, B) for initial value in the year 2001. For each age-group, the future birth rates and death rates are estimated by using quadratic polynomial curve fitting of the data for the years 2001 to 2012. Quadratic polynomial curve fitting is also used for the boundary value as the (0 - 4) age-group population based on the population size of the age-group for the years 2001 to 2012.展开更多
This paper reports a new approach to estimate kinetic parameters for the thermal decomposition of the solid state from TG-DTG or DSC curve.Reduced equations are derived for the first tlme.The validity of these equatio...This paper reports a new approach to estimate kinetic parameters for the thermal decomposition of the solid state from TG-DTG or DSC curve.Reduced equations are derived for the first tlme.The validity of these equations was demonstrated employing data obtained from the dehydration process of calcium oxalate monohydrate.展开更多
The purpose of this paper is to find the relationship between balance of foreign trade and real exchange rate in econometrics concept by using time series method. The authors used annual data of foreign trade deficit,...The purpose of this paper is to find the relationship between balance of foreign trade and real exchange rate in econometrics concept by using time series method. The authors used annual data of foreign trade deficit, real exchange rate, gross domestic product (GDP) of Turkey from 1989 to 2014, and analyzed the long-term relation of them by using ARDL bound testing method. By the result of test method; although there was a long-term relationship between balance of foreign trade, real exchange rate, GDP of Turkey and of the world, the coefficient of real exchange rate was insignificant in terms of statistical methods. Turkey and the world as well as being statistically significant coefficient of GDP, it was concluded that there was significant relationship with the economic aspects.展开更多
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
文摘Accurate and reliable river flow information is critical to planning and management for sustainable water resources utilization. Most of engineering activities related to hydrologic designs, flood, drought, reservoirs and their operations are heavily dependent on the river flow information derived from river rating curve. The rating curve for a given river section is normally developed from a set of direct stage-discharge measurements for different periods. This involves considerable labour, risk and resources, and presupposes a complex and extensive measuring survey. Extrapolating the rating curve beyond the measured range, as common in many cases, is fraught with errors and uncertainties, due to the complex hydraulic behaviour of the surface water profile in transition from section, channel, downstream and flood plain controls which are often poorly understood with direct measurements. Hydraulic modeling has recently emerged as one of the more promising methods to efficiently develop accurate rating curves for a river section with simple or complex hydraulic structures and conditions. This paper explores the use of a Hydraulic Engineering Center-River Analysis System (HEC-RAS) model to review and develop river rating curves for three hydrometric stations on two rivers in Kwale, coastal Kenya. The HEC-RAS models were set up based on topographical (cross section and longitudinal) survey data for the reaches and engineering drawings for the hydraulic structures commonly used as section controls for flow measurement. The model was calibrated under unsteady state conditions against measured stage-discharge data which were captured using a Velocity Current Meter (Valeport) and an Acoustic Doppler Current Profiler (ADCP) for both low and high flow. The rating curves were extracted from model results and the uncertainty associated with each rating curve analyzed. The results obtained by the HEC-RAS model were satisfactory and deemed acceptable for predicting discharge across the stage range at each river section.
文摘It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
基金The Project Supported by National Natural Science Foundation of China
文摘The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used to approximate the curved beam have better accuracy than the straight beam clement. The curved beam element constructed by displacement method can not satisfy rigid body motion condition and the very fine grids have to be used in order to satisfy rigid body motion condition approxtmately.In this paper it is proved that the straight beam element and the quasi-conforming element of the curved beam and shallow curved beam, when element size is reduced infinitely, have convergence rate with the same order O(l2) and when regular elements are used. I is the element length.
基金National Natural Science Foundation of China (60472118) High-tech Research Project of Jiangsu Province (BG2004008)
文摘Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.
文摘AIM: To determine the learning curves for antegrade double-balloon enteroscopy (aDBE) and retrograde DBE (rDBE) by analyzing the technical success rates. METHODS: A retrospective analysis in a tertiary referral center. This study reviewed all cases from June 2006 to April 2011 with a target lesion in the small-bowel identified by either capsule endoscopy or computed tomography scan posted for DBE examinations. Main outcome measurements were: (1) Technical success of aDBE def ined by f inding or excluding a target lesion after achieving suff icient length of small bowel intubation; and (2) Technical success for rDBE was def ined by either f inding the target lesion or achieving stable overtube placement in the ileum. RESULTS: Two hundred and eighty two procedures fulf illed the inclusion criteria and were analyzed. These procedures were analyzed by blocks of 30 cases. Therewas no distinct learning curve for aDBE. Technical success rates for rDBE continued to rise over time, although on logistic regression analysis testing for trend, there was no signif icance (P = 0.09). The odds of success increased by a factor of 1.73 (95% CI: 0.93-3.22) for rDBE. For these data, it was estimated that at least 30-35 cases of rDBE under supervision were needed to achieve a good technical success of more than 75%. CONCLUSION: There was no learning curve for aDBE. Technical success continued to increase over time for rDBE, although a learning curve could not be proven statistically. Approximately 30-35 cases of rDBE will be required for stable overtube intubation in ileum.
文摘Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data is available. The objectives of this study were to test the performance of a suite of regression models in predicting continuous water quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which includes several predefined regression models that specify the model form and complexity. Water quality data primarily nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from observation (“true” load) by -1% to 9%, but for the Total Phosphorus (TP) it ranged from -2% to 27%. Statistical evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in prediction.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
文摘The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.
文摘Hydraulic structure is designed based on hydraulic theories or guidelines. To ensure performance, physical model tests are often used at high discharges. However, high discharge in river is rare. Physical model tests at high discharges will probably lead biased hydrological relationship. To improve hydrological relationship at low discharges, in this study, we considered the diversion rating curve of the Yuanshanzi Diversion Work. The 1/100-scaled physical model tests at low and high discharges (90 - 1620 m3/s) were performed and coupled the diversion discharges of 5 flood events (2009-2010) in field. The official diversion rating curve was built only based on physical model tests at high discharges (837 - 1620 m3/s). The results of physical model tests in this study suggested the official diversion rating curve should be modified considering all tests. The modifications showed the official diversion rating curve was over-estimated. A complete series of physical model tests and considering field situations, in this study, indicated expanded physical model tests and constantly field measurements were therefore necessary for hydraulic structure, which provided information to modify used hydrological relationship to fit real situations.
文摘A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.
文摘On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.
文摘In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line search methods are based on finding a new iterate on a line starting from the current iterate at each iteration. The global convergence and linear convergence rate of these curve search methods are investigated under some mild conditions. Numerical results show that some curve search methods are stable and effective in solving some large scale minimization problems.
文摘Verifiable secret sharing is a special kind of secret sharing. In this paper, A secure and efficient threshold secret sharing scheme is proposed by using the plane parametric curve on the basis of the principle of secret sharing. And the performance of this threshold scheme is analyzed. The results reveal that the threshold scheme has its own advantage of one-parameter representation for a master key, and it is a perfect ideal secret sharing scheme. It can easily detect cheaters by single operation in the participants so that the probability of valid cheating is less than 1/<em>p</em> (where <em>p</em> is a large prime).
文摘In this paper, the age-specific population of Bangladesh based on a linear first order (hyperbolic) partial differential equation which is known as Von-Foerster Equation is studied. Applying quadratic polynomial curve fitting, the total population and population density of Bangladesh are projected for the years 2001 to 2050 based on the explicit upwind finite difference scheme for the age-structured population model based on given data (source: BBS & ICDDR, B) for initial value in the year 2001. For each age-group, the future birth rates and death rates are estimated by using quadratic polynomial curve fitting of the data for the years 2001 to 2012. Quadratic polynomial curve fitting is also used for the boundary value as the (0 - 4) age-group population based on the population size of the age-group for the years 2001 to 2012.
文摘This paper reports a new approach to estimate kinetic parameters for the thermal decomposition of the solid state from TG-DTG or DSC curve.Reduced equations are derived for the first tlme.The validity of these equations was demonstrated employing data obtained from the dehydration process of calcium oxalate monohydrate.
文摘The purpose of this paper is to find the relationship between balance of foreign trade and real exchange rate in econometrics concept by using time series method. The authors used annual data of foreign trade deficit, real exchange rate, gross domestic product (GDP) of Turkey from 1989 to 2014, and analyzed the long-term relation of them by using ARDL bound testing method. By the result of test method; although there was a long-term relationship between balance of foreign trade, real exchange rate, GDP of Turkey and of the world, the coefficient of real exchange rate was insignificant in terms of statistical methods. Turkey and the world as well as being statistically significant coefficient of GDP, it was concluded that there was significant relationship with the economic aspects.