期刊文献+
共找到939篇文章
< 1 2 47 >
每页显示 20 50 100
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment
1
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 Unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
下载PDF
Simulation and Field Testing of Multiple Vehicles Collision Avoidance Algorithms 被引量:9
2
作者 Chaoyue Zu Chao Yang +3 位作者 Jian Wang Wenbin Gao Dongpu Cao Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1045-1063,共19页
A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle c... A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA. 展开更多
关键词 collision avoidance intelligent vehicles intervehicle communication SIMULATION TESTING trajectory planning
下载PDF
Radar-Based Collision Avoidance for Unmanned Surface Vehicles' 被引量:4
3
作者 庄佳园 张磊 +3 位作者 赵士奇 曹建 王博 孙寒冰 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期867-883,共17页
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accu... Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into real- time marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing. 展开更多
关键词 unmanned surface vehicle (USV) marine radar collision avoidance
下载PDF
Use of Finite Element Analysis for the Prediction of Driver Fatality Ratio Based on Vehicle Intrusion Ratio in Head-On Collisions 被引量:1
4
作者 Rasoul Moradi Rajarshi Setpally Hamid M. Lankarani 《Applied Mathematics》 2013年第5期56-63,共8页
To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR p... To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR proposed by NHTSA is based on the actual crash statistical data, which makes it difficult to evaluate for other vehicle categories newly introduced to the market, as they do not have sufficient crash statistics. A finite element (FE) methodology is proposed in this study based on computational reconstruction of crashes and some objective measures to predict the relative risk of DFR associated with any vehicle-to-vehicle crash. The suggested objective measures include the ratios of maximum intrusion in the passenger compartments of the vehicles in crash, and the transmitted peak deceleration of the vehicles’ center of gravity, which are identified as the main influencing parameters on occupant injury. The suitability of the proposed method is established for a range of bullet light truck and van (LTV) categories against a small target passenger car with published data by NHTSA. A mathematical relation between the objective measures and DFR is then developed. The methodology is then extended to predict the relative risk of DFR for a crossover category vehicle, a light pick-up truck, and a mid-size car in crash against a small size passenger car. It is observed that the ratio of intrusions produces a reasonable estimate for the DFR, and that it can be utilized in predicting the relative risk of fatality ratios in head-on collisions. The FE methodology proposed in this study can be utilized in design process of a vehicle to reduce the aggressivity of the vehicle and to increase the on-road fleet compatibility in order to reduce the occupant injury out- come. 展开更多
关键词 Finite Element Modeling DRIVER FATALITY RATIO AGGRESSIVE Crash head-on collisions Passenger COMPARTMENT Intrusion OCCUPANT Injury Potential
下载PDF
Stochastic dynamic simulation of railway vehicles collision using data-driven modelling approach
5
作者 ShaodiDong Zhao Tang +1 位作者 Michelle Wu Jianjun Zhang 《Railway Engineering Science》 2022年第4期512-531,共20页
Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic ... Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision. 展开更多
关键词 Dynamic simulation Railway vehicle collision Stochastic process Data-driven stochastic process modelling
下载PDF
Local Path Planning and Tracking Control of Vehicle Collision Avoidance System 被引量:5
6
作者 Xu Zhijiang Zhao Wanzhong +1 位作者 Wang Chunyan Dai Yifan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期729-738,共10页
Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving fo... Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology. 展开更多
关键词 vehiclE collision avoidance dynamic model path planning tracking control
下载PDF
GENERAL SOLUTION FOR INTERACTION OF SOLITARY WAVES INCLUDING HEAD-ON COLLISIONS 被引量:1
7
作者 Chia-Shun Yih (The University of Michigan,Ann Arbor,Michigan 48109-2125,USA) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第2期97-101,共5页
A general solution of the Boussinesq equation is presented which solves the problem of interaction of any number of right-going and left-going solitary waves.The solution relies on the exact solu- tion of Gardner,Gree... A general solution of the Boussinesq equation is presented which solves the problem of interaction of any number of right-going and left-going solitary waves.The solution relies on the exact solu- tion of Gardner,Greene,Kruskal,and Miura(1967),and has the same degree of accuracy as that solution, but has a wider scope of application.It is much simpler than,but as accurate as,Hirota's exact solu- tion(1973)of the Boussinesq equation,to which the present solution is compared for the simplest case of two solitary waves in head-on collision. 展开更多
关键词 interaction of solitary waves head-on collisions KdV equation Boussinesq equation
下载PDF
ON HEAD-ON COLLISION BETWEEN TWO GKDV SOLITARY WAVES IN A STRATIFIED FLUID 被引量:1
8
作者 朱勇 戴世强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期300-308,共9页
In this paper,using the reductive perturbation method combined with the PLK method and two-parameter expansions,we treat the problem of head-on collision between two solitary waves described by the generalized Kortewe... In this paper,using the reductive perturbation method combined with the PLK method and two-parameter expansions,we treat the problem of head-on collision between two solitary waves described by the generalized Korteweg-de Vries equation (the gKdV equation) and obtain its second-order approximate solution.The results show that after the collision,the gKdV solitary waves preserve their profiles and during the collision,the maximum amplitute is the linear superposition of two maximum amplitudes of the impinging solitary waves. 展开更多
关键词 gKdV solitary wave head-on collision reductive perturbation method PLK method
下载PDF
Head-on collision of ring dark solitons in Bose-Einstein condensates
9
作者 薛具奎 彭娉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1149-1153,共5页
The ring dark solitons and their head-on collisions in a Bose-Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one movi... The ring dark solitons and their head-on collisions in a Bose-Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by the two cylindrical KdV equations in the respective reference frames. By using the extended Poincaré-Lighthill-Kuo perturbation method, the analytical phase shifts following the head-on collisions between two ring dark solitary waves are derived. It is shown that the phase shifts decrease with the radial coordinate r according to the r-1/3 law and depend on the initial soliton amplitude and radius. 展开更多
关键词 ring dark solitons Bose-Einstein condensates head-on collision
下载PDF
HEAD-ON COLLISION BETWEEN TWO mKdV SOLITARY WAVES IN A TWO-LAYER FLUID SYSTEM
10
作者 朱勇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第5期407-417,共11页
In this paper, based on the equations presented in [2], the head-on collision between two solitary waves described by the modified KdV equation (the mKdVequation, for short) is investigated by using the reductive pert... In this paper, based on the equations presented in [2], the head-on collision between two solitary waves described by the modified KdV equation (the mKdVequation, for short) is investigated by using the reductive perturbation method combined with the PLK method. These waves propagate at the interface of a two-fluid system, in which the density ratio of the two fluids equals the square of the depth ratio of the fluids. The second order perturbation solution is obtained. It is found that in the case of disregarding the nonuniform phase shift, the solitary waves preserve their original profiles after collision, which agrees with Fornberg and Whitham's numerical result of overtaking collision[6] whereas after considering the nonuniform phase shift, the wave profiles may deform after collision. 展开更多
关键词 mKdV solitary wave head-on collision perturbation method
下载PDF
Head-on collision between two hydroelastic solitary waves with Plotnikov-Toland's plate model
11
作者 M.M.Bhatti D.Q.Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期384-392,I0004,共10页
Head-on collision between two hydroelastic solitary waves propagating at the surface of an incompressible and ideal fluid covered by a thin ice sheet is analytically studied by means of a singular perturbation method.... Head-on collision between two hydroelastic solitary waves propagating at the surface of an incompressible and ideal fluid covered by a thin ice sheet is analytically studied by means of a singular perturbation method. The ice sheet is represented by the Plotnikov-Toland model with the help of the special Cosserat theory of hyperelastic shells and the Kirchhoff-Love plate theory,which yields the nonlinear and conservative expression for the bending forces. The shallow water assumption is taken for the fluid motion with the Boussinesq approximation. The resulting governing equations are solved asymptotically with the aid of the Poincaré-Lighthill-Kuo method,and the solutions up to the third order are explicitly presented. It is observed that solitary waves after collision do not change their shapes and amplitudes. The wave profile is symmetric before collision, and it becomes, after collision, unsymmetric and titled backward in the direction of wave propagation. The wave profile significantly reduces due to greater impacts of elastic plate and surface tension. A graphical comparison is presented with published results, and the graphical comparison between linear and nonlinear elastic plate models is also shown as a special case of our study. 展开更多
关键词 head-on collision Hydroelastic solitary waves Ice sheet PLK method
下载PDF
Simulating unmanned aerial vehicle flight control and collision detection 被引量:1
12
作者 Mengtian Liu Meng Gai Shunnan Lai 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期38-44,共7页
An unmanned aerial vehicle(UAV)is a small,fast aircraft with many useful features.It is widely used in military reconnaissance,aerial photography,searches,and other fields;it also has very good practical-application a... An unmanned aerial vehicle(UAV)is a small,fast aircraft with many useful features.It is widely used in military reconnaissance,aerial photography,searches,and other fields;it also has very good practical-application and development prospects.Since the UAV’s flight orientation is easily changeable,its orientation and flight path are difficult to control,leading to its high damage rate.Therefore,UAV flight-control technology has become the focus of attention.This study focuses on simulating a UAV’s flight and orientation control,and detecting collisions between a UAV and objects in a complex virtual environment.The proportional-integral-derivative control algorithm is used to control the orientation and position of the UAV in a virtual environment.A version of the bounding-box method that combines a grid with a k-dimensional tree is adopted in this paper,to improve the system performance and accelerate the collision-detection process.This provides a practical method for future studies on UAV flight position and orientation control,collision detection,etc. 展开更多
关键词 Unmanned aerial vehicle Proportional-integral-derivative control algorithm Orientation control Position control GRID k-dimensional tree collision detection
下载PDF
A Workable Solution for Reducing the Large Number of Vehicle and Pedestrian Accidents Occurring on a Yellow Light
13
作者 Pranav Gupta Silki Arora 《Journal of Transportation Technologies》 2024年第1期82-87,共6页
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada... Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs. 展开更多
关键词 Traffic Accidents Yellow Light Traffic Light Signals INTERSECTION Crashes collision Traffic Fatalities Traffic Injuries vehicles SAFETY Speed Limit Driving Pedestrians Bicyclists MOTORCYCLISTS Caution Line Yellow Light Dilemma Left Hand Turn on Yellow Distance Smart Road Technology Signs Signage Autonomous vehicles AVs Road Safety IoT Internet of Things Infrastructure Accident Reduction Driving Habits Stop Line Red Light Jumping Pedestrian Safety Caution Light Stopping at Intersection Safety at Intersections
下载PDF
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:8
14
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm (GA) particle swarmoptimization (PSO) ant colony optimization (ACO) collision avoidance
下载PDF
Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas:Instability and collision 被引量:1
15
作者 S.K.El-Labany E.F.El-Shamy +1 位作者 W.F.El-Taibany N.A.Zedan 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期237-247,共11页
Modeling of instability and collision of nonlinear dust-acoustic(NDA) envelope solitons in strongly coupled dusty plasmas(SCDPs) is theoretically investigated. The SCDPs consists of strongly correlated negatively ... Modeling of instability and collision of nonlinear dust-acoustic(NDA) envelope solitons in strongly coupled dusty plasmas(SCDPs) is theoretically investigated. The SCDPs consists of strongly correlated negatively variable-charged dust grains and weakly correlated Boltzmann electrons and ions. Using the derivative expansion perturbation technique, a nonlinear Schr dinger-type(NLST) equation for describing the propagation of NDA envelope solitons is derived. Moreover,the extended Poincar′e–Lighthill–Kuo(EPLK) method is employed to deduce the analytical phase shifts and the trajectories after the collision of NDA envelope solitons. In detail, the results show that both modulation instability and phase shift after collision of NDA envelope solitons will modify with the increase in the effects of the viscosity, the relaxation time, and the dust charge fluctuation. Crucially, the modeling of dust-acoustic envelope solitons collision, as reported here, is helpful for understanding the propagation of NDA envelope solitons in strongly coupled dusty plasmas. 展开更多
关键词 dust acoustic wave envelopes modulational instability head-on collision polarization effects
下载PDF
Analysis of Highway Sloped Median Performance for Containment of Errant Vehicles
16
作者 Oluremi Ayotunde Olatunbosun Rui He Olurotimi Shitta-Bey 《World Journal of Engineering and Technology》 2018年第1期68-80,共13页
Errant vehicles occur as a result of the driver losing control of the vehicle. This may be due to sudden illness, dozing off or skidding while attempting a manoeuvre. In containing such an errant vehicle on a highway,... Errant vehicles occur as a result of the driver losing control of the vehicle. This may be due to sudden illness, dozing off or skidding while attempting a manoeuvre. In containing such an errant vehicle on a highway, the priority is to avoid collision with other vehicles. A sloped highway median provides a run-off area for such vehicles where the vehicle can be slowed down and stopped without the danger of being re-directed into the path of other vehicles as may occur with edge barriers. Here, the effect of a containment barrier at the bottom of the sloped median is studied with a view to prevent the vehicle from being redirected outside the median after colliding with the barrier. The focus of this work is on the change of kinematic states due to the collision, so a momentum-based vehicle collision analysis is developed, with the collision energy loss related to the vehicle stiffness being considered by coefficient of restitution. The average maximum lateral displacements post-collision are read from the diagram of vehicle x-y trajectories. In this way, the most suitable median slope 1:6 is selected. 展开更多
关键词 vehiclE collision Model Simulation HIGHWAY Sloped MEDIAN
下载PDF
A review on COLREGs-compliant navigation of autonomous surface vehicles:From traditional to learning-based approaches
17
作者 Liang Hu Huosheng Hu +1 位作者 Wasif Naeem Zidong Wang 《Journal of Automation and Intelligence》 2022年第1期23-33,共11页
A growing interest in developing autonomous surface vehicles(ASVs)has been witnessed during the past two decades,including COLREGs-compliant navigation to ensure safe autonomy of ASVs operating in complex waterways.Th... A growing interest in developing autonomous surface vehicles(ASVs)has been witnessed during the past two decades,including COLREGs-compliant navigation to ensure safe autonomy of ASVs operating in complex waterways.This paper reviews the recent progress in COLREGs-compliant navigation of ASVs from traditional to learning-based approaches.It features a holistic viewpoint of ASV safe navigation,namely from collision detection to decision making and then to path replanning.The existing methods in all these three stages are classified according to various criteria.An in-time overview of the recently-developed learning-based methods in motion prediction and path replanning is provided,with a discussion on ASV navigation scenarios and tasks where learning-based methods may be needed.Finally,more general challenges and future directions of ASV navigation are highlighted. 展开更多
关键词 Autonomous surface vehicle collision avoidance Path re-planning Deep reinforcement learning
下载PDF
Hierarchical CNNPID Based Active Steering Control Method for Intelligent Vehicle Facing Emergency Lane-Changing
18
作者 Wensa Wang Jun Liang +1 位作者 Chaofeng Pan Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期355-371,共17页
To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on ... To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller. 展开更多
关键词 Intelligent vehicle Rear-end collision avoidance Steering control Dynamics model Neural Network PID control
下载PDF
Multi objective optimization method for collision safety of networked vehicles based on improved particle optimization
19
作者 Zhiyi Huo Weize Liu Qian Wang 《Journal of Control and Decision》 EI 2023年第1期134-142,共9页
The crashworthiness and energy absorption optimization of automobile structure is an importantresearch content of the modern automobile industry. Facing the problem that traditionaloptimization methods are difficult t... The crashworthiness and energy absorption optimization of automobile structure is an importantresearch content of the modern automobile industry. Facing the problem that traditionaloptimization methods are difficult to find the optimal solution for multi-objective parametersof vehicle structure crashworthiness problem, a multi-objective optimization method of vehiclecrash safety based on improved particle swarm optimization is proposed. Through the collectionand optimization of vehicle collision safety parameters, the vehicle structure performance isimproved, and the vehicle regression model is constructed. Using this method, the front-endstructure reinforcement of the vehicle is taken as the design variable. In order to realize themulti-objective optimization design method of vehicle collision safety, the multi-objective optimizationparameters of vehicle frontal collision and offset collision are taken as the objectivefunction. Finally, the simulation results show that the multi-objective optimization method basedon an improved particle swarm optimization algorithm has an obvious effect on the optimizationof vehicle structure crash safety. 展开更多
关键词 Improved particle swarm optimization vehicle collision multi-objective optimization
原文传递
Correlation study between the square-coneenergy-absorbing structure and the frontal collisionbehaviour of leading vehicles
20
作者 Ping Xu Ying Gao +3 位作者 Chong Huang Chengxing Yang Shuguang Yao Quanwei Che 《Transportation Safety and Environment》 EI 2023年第3期60-77,共18页
In order to study the influence of square-cone energy-absorbing structures on the mechanical behaviour of the ollision performance of the leading vehicle,a parameterization method for rapidly changing the performance ... In order to study the influence of square-cone energy-absorbing structures on the mechanical behaviour of the ollision performance of the leading vehicle,a parameterization method for rapidly changing the performance of energy-absorbing structures was proposed.Firstly,a finite element simulation model of the collision of the leading vehicle with a square-cone energy-absorbing structure was constructed.Then,the platform force,the slope of the platform force and the initial peak force of the force-displacement curve derived from the energy-absorbing structure were studied for the collision performance of the leading vehicle.Finally,the correlation model of the square-cone energy-absorbing structure and the mechanical behaviour of the collision performance of the leading vehicle was established by the response surface method.The results showed that the increase of the platform force of the energy-absorbing structure can effectively buffer the longitudinal impact of the train and reduce the nodding attitude of the train.The increase of the platform force slope can not only effectively buffer the longitudinal impact and vertical nodding of the train,but also reduce the lateral swing of the train.An increase in the initial peak force to a certain extent may lead to a change in the deformation mode,thereby reducing the energy-absorption fficiency.The correlation model can guide the design of the square-cone energy-absorbing structure and predict the deformation attitude of the leading vehicle. 展开更多
关键词 square-cone energy-absorbing structure parametric method correlation model collision performance rail vehicle
原文传递
上一页 1 2 47 下一页 到第
使用帮助 返回顶部