As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focus...As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.展开更多
7878 patients with tumors in the head and neck were analyzed in a period of twenty years. All the diagnosis were confirmed by pathologic examination. There were 5485 cases (69.62%) of malignant tumors. Nearly an half ...7878 patients with tumors in the head and neck were analyzed in a period of twenty years. All the diagnosis were confirmed by pathologic examination. There were 5485 cases (69.62%) of malignant tumors. Nearly an half of malignant tumors were in the nasopharynx (49.32%). Among the malignant tumors of the nasopharynx, 2698 were carcinoma (99.34%) and only 18 (0.66%) sarcoma. Nine of them were under 10 years of age, the youngest patient was 3 years old, and this is rare in our county. The incidence of head and neck tumors was 37.66% and that of the head and neck malignancies was 26.22% of tumors in the whole body. This study indicates that incidence of malignant tumor in head and neck was rather higher, it is worth to improve ths procedure of treatment and prevention.展开更多
This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and...This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and mechanical parameters.Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system.Each femoral head was divided into 12 sub-regions according to the trabecular orientation.One 125 mm^3 trabecular cubic model was reconstructed from each sub-region.A total of 81 trabecular models were reconstructed,except three destroyed sub-regions from two femoral heads during the surgery.Trabecular morphological parameters,i.e.trabecular separation(Tb.Sp),trabecular thickness(Tb.Th),specific bone surface(BS/B V),bone volume fraction(BV/TV),structural model index(SMI),and degree of anisotropy(DA) were measured.Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1%compressive strain along three orthogonal directions,respectively.Results revealed significant regional variations in the morphological parameters(P〈0.05).Young's moduli along the trabecular orientation were significantly higher than those along the other two directions.In general,trabecular mechanical properties in the medial region were lower than those in the lateral region.Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV,BV/TV,Tb.Th,and DA.In this study,regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level.The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51575385)
文摘As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
文摘7878 patients with tumors in the head and neck were analyzed in a period of twenty years. All the diagnosis were confirmed by pathologic examination. There were 5485 cases (69.62%) of malignant tumors. Nearly an half of malignant tumors were in the nasopharynx (49.32%). Among the malignant tumors of the nasopharynx, 2698 were carcinoma (99.34%) and only 18 (0.66%) sarcoma. Nine of them were under 10 years of age, the youngest patient was 3 years old, and this is rare in our county. The incidence of head and neck tumors was 37.66% and that of the head and neck malignancies was 26.22% of tumors in the whole body. This study indicates that incidence of malignant tumor in head and neck was rather higher, it is worth to improve ths procedure of treatment and prevention.
基金supported by the National Natural Science Foundation of China(Nos.11322223,11432016,81471753 and 11272134)the 973 Program(No.2012CB821202)
文摘This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and mechanical parameters.Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system.Each femoral head was divided into 12 sub-regions according to the trabecular orientation.One 125 mm^3 trabecular cubic model was reconstructed from each sub-region.A total of 81 trabecular models were reconstructed,except three destroyed sub-regions from two femoral heads during the surgery.Trabecular morphological parameters,i.e.trabecular separation(Tb.Sp),trabecular thickness(Tb.Th),specific bone surface(BS/B V),bone volume fraction(BV/TV),structural model index(SMI),and degree of anisotropy(DA) were measured.Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1%compressive strain along three orthogonal directions,respectively.Results revealed significant regional variations in the morphological parameters(P〈0.05).Young's moduli along the trabecular orientation were significantly higher than those along the other two directions.In general,trabecular mechanical properties in the medial region were lower than those in the lateral region.Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV,BV/TV,Tb.Th,and DA.In this study,regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level.The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.