[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) com...[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.展开更多
In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile com...In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.展开更多
An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy wit...An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy with two sets of calibration. Dimethylsulfoxide (DMSO) was selected as the sample diluent and internal standards were used to minimize signal variations due to the preparative step. A gas chroma- tograph from Agilent Model 6890 equipped with flame ionization detector (FID) and a DB-624 (30 m × 0.53 mm i.d., 3.00 μm film thickness) column was used. The inlet split ratio was 5:1. The influ- encing factors in the chromatographic separation of the analytes were determined through a fractional factorial experimental design. Significant variables: the initial temperature (IT), the final temperature (FT) of the oven and the carrier gas flow rate (F) were optimized using a central composite design. Response transformation and desirability function were applied to find out the optimal combination of the chromatographic variables to achieve an adequate resolution of the analytes and short analysis time. These conditions were 30 ℃ for IT, 158 ℃ for FT and 1.90 mL/min for F. The method was proven to be accurate, linear in a wide range and very sensitive for the analyzed solvents through a comprehensive validation according to the ICH guidelines.展开更多
An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector...An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector (FID). As a sample diluent in a headspace sampling, dimethylformamide (DMF) was selected owing to its high capacity for dissolving both bixin-based and norbixin-based annatto extracts. The quantification of residual solvents was performed using the external standard method. The linearity of the calibration curves was assured with relative coefficients (R2) that were greater than 0.999. The recoveries of all standard solvents spiked in the annatto extracts were in the range from 95.1% to 107.1% to verify the accuracy and the relative standard deviation (RSD%) values (n = 3) were in the range from 0.57% to 3.31%. The quantification limits (QL) were sufficiently lower than the limits specified by Joint FAO/WHO Expert Committee on Food Additives (JECFA). With the established HSGC method, six residual solvents (methanol, ethanol, 2-propanol, acetone, ethyl acetate, and hexane) in 23 commercial annatto-extract products that consist of seven bixin-based and 16 norbixin-based products were quantified. The levels of residual ethyl acetate and hexane in all products were lower than the specified limits of JECFA. However, three samples of bixin-based products showed higher levels of residual 2-propanol (approximately 313.9 - 427.7 ppm) than the specified limit. Other bixin products also showed higher concentrations of residual methanol (approximately 166.6 - 394.7 ppm) and residual acetone (approximately 75.2 - 179.8 ppm) than the limits of JECFA. In the case of norbixin-based products, nine samples showed higher levels of residual acetone (approximately 42.6 - 139.5 ppm) than the limits of JECFA. This is the first survey of residual solvents in annatto extracts using the validated HSGC method.展开更多
We have investigated the use of flash evaporation, headspace solid-phase microextraction (HS-SPME) and steam distillation (SD) as sample concentration and preparation techniques for the analysis of volatile constituen...We have investigated the use of flash evaporation, headspace solid-phase microextraction (HS-SPME) and steam distillation (SD) as sample concentration and preparation techniques for the analysis of volatile constituents present in Houttuynia cordata Thunb. The samples were analyzed by gas chromatography (GC) and identified by mass spectrometry (MS). Comparison studies were performed. It was found that the results obtained between Headspace solid-phase microextraction HS-SPME and SD techniques were in good agreement. Seventy-nine compounds in Houttuynia cordata Thunb were identified by MS. In flash evaporation, thirty-nine compounds were identified. Discrimination in the response for many constituents studied was not observed, which can be clearly observed in SD and HS-SPME techniques. As a conclusion, HS-SPME is a powerful tool for determining the volatile constitutes present in the Houttuynia cordata.展开更多
Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro...Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.展开更多
This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application ...This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.展开更多
The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were co...The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were conducted to analyze the dynamic response of cartridge cases during internal impact considering the initial radial clearances between the cartridge case and chamber.A theoretical model was proposed to predict the cartridge case headspace considering both the deformation and movement of the cartridge case and confirmed by the results of nonlinear finite element simulations.The differences between the results of the conventional static model and the dynamic model were then comprehensively evaluated.The effects of the angle between the cartridge and chamber,the cartridge case material,and the intermal impact pressure on the predicted headspace value were also analyzed.The dynamic response of the cartridge case predicted by the dynamic model was more accurate than that predicted by the conventional static model.The internal impact pressure,pressure change rate,and cartridge material were all found to affect the predicted headspace.展开更多
To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and C...To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and CO2 emissions were inhibited by the addition of 100 mL L-1 of C2H2. However, the inhibition to CO2 emission was alleviated by the replacement of headspace gas, and the N2O emission was enhanced by the replacement. Acetylene disappeared evidently from the soil slumes during the incubation. Consequently results obtained from the traditional C2H2 blocking technique for determination of denitrification rate, especially in a long-time incubation, should be explained with care because of its side effect existing in the incubation environments without change of headspace gas. To reduce the possible side effect on the processes other than denitrification, it is suggested that headspace gas should be replaced several times during a long-time incubation.展开更多
Volatile organic compounds(VOCs) emitted from three types of carpets used in aircrafts were compared by using headspace and dynamic chamber tests. The headspace samples contained many compounds that were not detected ...Volatile organic compounds(VOCs) emitted from three types of carpets used in aircrafts were compared by using headspace and dynamic chamber tests. The headspace samples contained many compounds that were not detected in the dynamic chamber test; in addition, the dominant VOCs found by these two methods were different. The findings indicate that for highly sorptive materials such as carpets, headspace analysis may give inaccurate indication of actual VOC emissions, and it is necessary to conduct dynamic chamber tests over a certain period of time in order to identify the true emission characteristics. From the dynamic chamber tests, 2-ethyl-1-hexanol was the main VOC emitted from all three carpets. The study also examined the emission characteristics of aircraft carpets. In all experiments, total VOC(TVOC) concentration peaked within a few hours after the start of the experiment and was followed by rapid decay. The emission parameters of TVOC emitted by all three carpets were calculated and the simulated data matched the measured data well.展开更多
Headspace sampling-gas chromatography(HS-GC)coupled with an internal standard method(ISM)was developed to analyze the volatile flavor compounds in top fermented wheat beer in the laboratory.Eight compounds,i.e.acetald...Headspace sampling-gas chromatography(HS-GC)coupled with an internal standard method(ISM)was developed to analyze the volatile flavor compounds in top fermented wheat beer in the laboratory.Eight compounds,i.e.acetaldehyde,N-propanol,ethyl acetate,isobutyl alcohol,isoamyl alcohol,isoamyl acetate,ethyl hexanoate and ethyl octanoate were separated and quantified.This method was validated to ensure the quality of the results:the precision was satisfactory with relative standard deviation(RSD)in the range of 1.51%-4.22%,recoveries for all the analytes ranged from 95.15%to 99.85%,and the limits of detection were in the range of 0.0002-0.024 mg/L.Results of real wheat beer samples analyzed using this method showed that the volatile compound concentrations were in the range of 0.08-99.91 mg/L.Results suggested that this method exhibited good reproducibility,selectivity and high precision,and it can be useful for the analysis of routine beer samples.展开更多
Static headspace GC-MS method coupled with H/D exchange was firstly developed to determine and identify the volatile components in the fresh root and rhizome of Curcuma wenyujin. The TIC chromatograms of 3 batches of ...Static headspace GC-MS method coupled with H/D exchange was firstly developed to determine and identify the volatile components in the fresh root and rhizome of Curcuma wenyujin. The TIC chromatograms of 3 batches of fresh roots harvested at different time showed significant difference in the volatile components: the constitution was the same but the content of them was different. More than 60 volatile components in fresh roots (Root of C. wenyujin) and rhizomes (Rhizome of C. wenyujin) of C. wenyujin were detected, of which 51 and 48 volatile components were identified respectively. The fresh roots and rhizomes of C. wenyujin were found to have the similar volatile components. The contents of these components were calibrated by the response of β-elemene. In addition, the principal active component, β-elemene, was further confirmed and relatively quantified by its standard. γ-terpinene showed obvious allylic hydrogen/deuterium exchange using deuterium oxide which gave a new method to identify some compounds containing allylic hydrogen. At the same time, the active hydrogen compounds were also further confirmed. The results show that HS-GC-MS of volatile components from medical plants. method is a fast, simple and efficient way for the analysis展开更多
Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyze...Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.展开更多
The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spe...The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.展开更多
The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K ...The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.展开更多
基金Supported by Key Science and Technology Project of Gansu Province(1302NKDA028)Science and Technology Planning Project of Lanzhou(2010-1-239+2 种基金 2016-3-4)Talent Project of Lanzhou Science and Technology Bureau(2015-RC-87)Project of Science and Technology Cooperation between Gansu Academy of Agricultural Sciences and Local Areas(2017GAAS63)
文摘[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.
文摘In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.
基金Universidad Nacional del Litoral (Projects CAI+D 2011 No.PI-50120110100025 LI)ANPCyT (Agencia Nacional de Promocin Científica y Tecnolgica,Project PICT 2011-0005) for financial support
文摘An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy with two sets of calibration. Dimethylsulfoxide (DMSO) was selected as the sample diluent and internal standards were used to minimize signal variations due to the preparative step. A gas chroma- tograph from Agilent Model 6890 equipped with flame ionization detector (FID) and a DB-624 (30 m × 0.53 mm i.d., 3.00 μm film thickness) column was used. The inlet split ratio was 5:1. The influ- encing factors in the chromatographic separation of the analytes were determined through a fractional factorial experimental design. Significant variables: the initial temperature (IT), the final temperature (FT) of the oven and the carrier gas flow rate (F) were optimized using a central composite design. Response transformation and desirability function were applied to find out the optimal combination of the chromatographic variables to achieve an adequate resolution of the analytes and short analysis time. These conditions were 30 ℃ for IT, 158 ℃ for FT and 1.90 mL/min for F. The method was proven to be accurate, linear in a wide range and very sensitive for the analyzed solvents through a comprehensive validation according to the ICH guidelines.
文摘An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector (FID). As a sample diluent in a headspace sampling, dimethylformamide (DMF) was selected owing to its high capacity for dissolving both bixin-based and norbixin-based annatto extracts. The quantification of residual solvents was performed using the external standard method. The linearity of the calibration curves was assured with relative coefficients (R2) that were greater than 0.999. The recoveries of all standard solvents spiked in the annatto extracts were in the range from 95.1% to 107.1% to verify the accuracy and the relative standard deviation (RSD%) values (n = 3) were in the range from 0.57% to 3.31%. The quantification limits (QL) were sufficiently lower than the limits specified by Joint FAO/WHO Expert Committee on Food Additives (JECFA). With the established HSGC method, six residual solvents (methanol, ethanol, 2-propanol, acetone, ethyl acetate, and hexane) in 23 commercial annatto-extract products that consist of seven bixin-based and 16 norbixin-based products were quantified. The levels of residual ethyl acetate and hexane in all products were lower than the specified limits of JECFA. However, three samples of bixin-based products showed higher levels of residual 2-propanol (approximately 313.9 - 427.7 ppm) than the specified limit. Other bixin products also showed higher concentrations of residual methanol (approximately 166.6 - 394.7 ppm) and residual acetone (approximately 75.2 - 179.8 ppm) than the limits of JECFA. In the case of norbixin-based products, nine samples showed higher levels of residual acetone (approximately 42.6 - 139.5 ppm) than the limits of JECFA. This is the first survey of residual solvents in annatto extracts using the validated HSGC method.
文摘We have investigated the use of flash evaporation, headspace solid-phase microextraction (HS-SPME) and steam distillation (SD) as sample concentration and preparation techniques for the analysis of volatile constituents present in Houttuynia cordata Thunb. The samples were analyzed by gas chromatography (GC) and identified by mass spectrometry (MS). Comparison studies were performed. It was found that the results obtained between Headspace solid-phase microextraction HS-SPME and SD techniques were in good agreement. Seventy-nine compounds in Houttuynia cordata Thunb were identified by MS. In flash evaporation, thirty-nine compounds were identified. Discrimination in the response for many constituents studied was not observed, which can be clearly observed in SD and HS-SPME techniques. As a conclusion, HS-SPME is a powerful tool for determining the volatile constitutes present in the Houttuynia cordata.
基金National Natural Science Foundation of China(Grant No.81872996)Natural Science Foundation of Tianjin of China(Grant No.20JCYBJC00060).
文摘Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.
基金Supported by Special Fund for Scientific Research Project from the Education Department of Shaanxi Province(16JK1275)National Science and Technology Innovation Support Fund Project for College Students(16XK046)
文摘This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372137 and 11602025)Equipment Development Department of the Central Military Commission of China(Grant No.301030905)。
文摘The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were conducted to analyze the dynamic response of cartridge cases during internal impact considering the initial radial clearances between the cartridge case and chamber.A theoretical model was proposed to predict the cartridge case headspace considering both the deformation and movement of the cartridge case and confirmed by the results of nonlinear finite element simulations.The differences between the results of the conventional static model and the dynamic model were then comprehensively evaluated.The effects of the angle between the cartridge and chamber,the cartridge case material,and the intermal impact pressure on the predicted headspace value were also analyzed.The dynamic response of the cartridge case predicted by the dynamic model was more accurate than that predicted by the conventional static model.The internal impact pressure,pressure change rate,and cartridge material were all found to affect the predicted headspace.
文摘To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and CO2 emissions were inhibited by the addition of 100 mL L-1 of C2H2. However, the inhibition to CO2 emission was alleviated by the replacement of headspace gas, and the N2O emission was enhanced by the replacement. Acetylene disappeared evidently from the soil slumes during the incubation. Consequently results obtained from the traditional C2H2 blocking technique for determination of denitrification rate, especially in a long-time incubation, should be explained with care because of its side effect existing in the incubation environments without change of headspace gas. To reduce the possible side effect on the processes other than denitrification, it is suggested that headspace gas should be replaced several times during a long-time incubation.
基金Funded by the National Basic Research Program of China(973 Program) under Grant No.2012CB720100
文摘Volatile organic compounds(VOCs) emitted from three types of carpets used in aircrafts were compared by using headspace and dynamic chamber tests. The headspace samples contained many compounds that were not detected in the dynamic chamber test; in addition, the dominant VOCs found by these two methods were different. The findings indicate that for highly sorptive materials such as carpets, headspace analysis may give inaccurate indication of actual VOC emissions, and it is necessary to conduct dynamic chamber tests over a certain period of time in order to identify the true emission characteristics. From the dynamic chamber tests, 2-ethyl-1-hexanol was the main VOC emitted from all three carpets. The study also examined the emission characteristics of aircraft carpets. In all experiments, total VOC(TVOC) concentration peaked within a few hours after the start of the experiment and was followed by rapid decay. The emission parameters of TVOC emitted by all three carpets were calculated and the simulated data matched the measured data well.
文摘Headspace sampling-gas chromatography(HS-GC)coupled with an internal standard method(ISM)was developed to analyze the volatile flavor compounds in top fermented wheat beer in the laboratory.Eight compounds,i.e.acetaldehyde,N-propanol,ethyl acetate,isobutyl alcohol,isoamyl alcohol,isoamyl acetate,ethyl hexanoate and ethyl octanoate were separated and quantified.This method was validated to ensure the quality of the results:the precision was satisfactory with relative standard deviation(RSD)in the range of 1.51%-4.22%,recoveries for all the analytes ranged from 95.15%to 99.85%,and the limits of detection were in the range of 0.0002-0.024 mg/L.Results of real wheat beer samples analyzed using this method showed that the volatile compound concentrations were in the range of 0.08-99.91 mg/L.Results suggested that this method exhibited good reproducibility,selectivity and high precision,and it can be useful for the analysis of routine beer samples.
基金Project supported by the National Natural Science Foundation of China (No. 20475059) and the Chinese Academy of Sciences (No. KGCX2-SW-213-04).
文摘Static headspace GC-MS method coupled with H/D exchange was firstly developed to determine and identify the volatile components in the fresh root and rhizome of Curcuma wenyujin. The TIC chromatograms of 3 batches of fresh roots harvested at different time showed significant difference in the volatile components: the constitution was the same but the content of them was different. More than 60 volatile components in fresh roots (Root of C. wenyujin) and rhizomes (Rhizome of C. wenyujin) of C. wenyujin were detected, of which 51 and 48 volatile components were identified respectively. The fresh roots and rhizomes of C. wenyujin were found to have the similar volatile components. The contents of these components were calibrated by the response of β-elemene. In addition, the principal active component, β-elemene, was further confirmed and relatively quantified by its standard. γ-terpinene showed obvious allylic hydrogen/deuterium exchange using deuterium oxide which gave a new method to identify some compounds containing allylic hydrogen. At the same time, the active hydrogen compounds were also further confirmed. The results show that HS-GC-MS of volatile components from medical plants. method is a fast, simple and efficient way for the analysis
基金supported by National Basic Research Program of China(973 Program,No.2015CB554506)~~
文摘Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.
基金supported by Hebei Provincial Key Research Projects(19227114D)the Vegetable Industry Innovation Team Project of Hebei Modern Agricultural Industrial Technology System(HBCT2018030208).
文摘The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.
基金support for this work from the National Natural Science Foundation of China(31960294,32160349)Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2017Z005,2020Z005)+1 种基金the Project for Cultivating New Century Academic and Technology Leaders of Nanning City(2020010)the High-Performance Computing Platform of Guangxi University.
文摘The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.