In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Associ...In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.展开更多
Professor Xiao Zhuoji, an economist at the prestigious Peking University, has always been optimistic about the stability of the Chinese economy. In an exclusive interview with People's Daily, he shares his views o...Professor Xiao Zhuoji, an economist at the prestigious Peking University, has always been optimistic about the stability of the Chinese economy. In an exclusive interview with People's Daily, he shares his views on "hot spots" in China's economic growth.展开更多
Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accide...Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.展开更多
Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using b...Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.展开更多
Mental health signifies the emotional,social,and psychological well-being of a person.It also affects the way of thinking,feeling,and situation handling of a person.Stable mental health helps in working with full pote...Mental health signifies the emotional,social,and psychological well-being of a person.It also affects the way of thinking,feeling,and situation handling of a person.Stable mental health helps in working with full potential in all stages of life from childhood to adulthood therefore it is of significant importance to find out the onset of the mental disease in order to maintain balance in life.Mental health problems are rising globally and constituting a burden on healthcare systems.Early diagnosis can help the professionals in the treatment that may lead to complications if they remain untreated.The machine learning models are highly prevalent for medical data analysis,disease diagnosis,and psychiatric nosology.This research addresses the challenge of detecting six major psychological disorders,namely,Anxiety,Bipolar Disorder,Conversion Disorder,Depression,Mental Retardation and Schizophrenia.These challenges are mined by applying decision level fusion of supervised machine learning algorithms.A dataset was collected from a clinical psychologist consisting of 1771 observations that we used for training and testing the models.Furthermore,to reduce the impact of a conflicting decision,a voting scheme Shrewd Probing Prediction Model(SPPM)is introduced to get output from ensemble model of Random Forest and Gradient Boosting Machine(RF+GBM).This research provides an intuitive solution for mental disorder analysis among different target class labels or groups.A framework is proposed for determining the mental health problem of patients using observations of medical experts.The framework consists of an ensemble model based on RF and GBM with a novel SPPM technique.This proposed decision level fusion approach by combining RF+GBM with SPPM-MIN significantly improves the performance in terms of Accuracy,Precision,Recall,and F1-score with 71\%,73\%,71\%and 71\%respectively.This framework seems suitable in the case of huge and more diverse multiclass datasets.Furthermore,three vector spaces based on TF-IDF(unigram,bi-gram,and tri-gram)are also tested on the machine learning models and the proposed model.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.50539010)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.200801019)
文摘In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.
文摘Professor Xiao Zhuoji, an economist at the prestigious Peking University, has always been optimistic about the stability of the Chinese economy. In an exclusive interview with People's Daily, he shares his views on "hot spots" in China's economic growth.
基金Fundamental Research Funds for the Central Universities,China(No.DUT17GF214)
文摘Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.
基金This work was supported by the National Key R&D Program of China(2021YFB2402002)the Beijing Natural Science Foundation(L223013)the Chongqing Automobile Collaborative Innovation Centre(No.2022CDJDX-004).
文摘Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.
基金This work was supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159)and(NRF-2021R1A6A1A03039493).
文摘Mental health signifies the emotional,social,and psychological well-being of a person.It also affects the way of thinking,feeling,and situation handling of a person.Stable mental health helps in working with full potential in all stages of life from childhood to adulthood therefore it is of significant importance to find out the onset of the mental disease in order to maintain balance in life.Mental health problems are rising globally and constituting a burden on healthcare systems.Early diagnosis can help the professionals in the treatment that may lead to complications if they remain untreated.The machine learning models are highly prevalent for medical data analysis,disease diagnosis,and psychiatric nosology.This research addresses the challenge of detecting six major psychological disorders,namely,Anxiety,Bipolar Disorder,Conversion Disorder,Depression,Mental Retardation and Schizophrenia.These challenges are mined by applying decision level fusion of supervised machine learning algorithms.A dataset was collected from a clinical psychologist consisting of 1771 observations that we used for training and testing the models.Furthermore,to reduce the impact of a conflicting decision,a voting scheme Shrewd Probing Prediction Model(SPPM)is introduced to get output from ensemble model of Random Forest and Gradient Boosting Machine(RF+GBM).This research provides an intuitive solution for mental disorder analysis among different target class labels or groups.A framework is proposed for determining the mental health problem of patients using observations of medical experts.The framework consists of an ensemble model based on RF and GBM with a novel SPPM technique.This proposed decision level fusion approach by combining RF+GBM with SPPM-MIN significantly improves the performance in terms of Accuracy,Precision,Recall,and F1-score with 71\%,73\%,71\%and 71\%respectively.This framework seems suitable in the case of huge and more diverse multiclass datasets.Furthermore,three vector spaces based on TF-IDF(unigram,bi-gram,and tri-gram)are also tested on the machine learning models and the proposed model.