期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of dynamic sequential test strategy for equipment health management 被引量:3
1
作者 Shuming Yang Jing Qiu Guanjun Liu Peng Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期71-77,共7页
Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential te... Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective. 展开更多
关键词 equipment health management (EHM) dynamic sequential test strategy (DSTS) partially observable semi-Markov decision process (POSMDP) optimal equation.
下载PDF
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
2
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 equipment health Prognostics Remaining Useful Life Prediction Pulse Separable Convolution Attention Mechanism Transformer Encoder
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部