BACKGROUND Breast cancer is one of the most common malignant tumors in women worldwide and poses a severe threat to their health.Therefore,this study examined patients who underwent breast cancer surgery,analyzed hosp...BACKGROUND Breast cancer is one of the most common malignant tumors in women worldwide and poses a severe threat to their health.Therefore,this study examined patients who underwent breast cancer surgery,analyzed hospitalization costs and structure,and explored the impact of China Healthcare Security Diagnosis Related Groups(CHS-DRG)management on patient costs.It aimed to provide medical institutions with ways to reduce costs,optimize cost structures,reduce patient burden,and improve service efficiency.AIM To study the CHS-DRG payment system’s impact on breast cancer surgery costs.METHODS Using the CHS-DRG(version 1.1)grouping criteria,4073 patients,who underwent the radical resection of breast malignant tumors from January to December 2023,were included in the JA29 group;1028 patients were part of the CHS-DRG payment system,unlike the rest.Through an independent sample t-test,the length of hospital stay as well as total hospitalization,medicine and consumables,medical,nursing,medical technology,and management expenses were compared.Pearson’s correlation coefficient was used to test the cost correlation.RESULTS In terms of hospitalization expenses,patients in the CHS-DRG payment group had lower medical,nursing,and management expenses than those in the diagnosis-related group(DRG)non-payment group.For patients in the DRG payment group,the factors affecting the total hospitalization cost,in descending order of relevance,were medicine and consumable costs,consumable costs,medicine costs,medical costs,medical technology costs,management costs,nursing costs,and length of hospital stay.For patients in the DRG nonpayment group,the factors affecting the total hospitalization expenses in descending order of relevance were medicines and consumable expenses,consumable expenses,medical technology expenses,the cost of medicines,medical expenses,nursing expenses,length of hospital stay,and management expenses.CONCLUSION The CHS-DRG system can help control and reduce unnecessary medical expenses by controlling medicine costs,medical consumable costs,and the length of hospital stay while ensuring medical safety.展开更多
Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus s...Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.展开更多
基金Research Center for Capital Health Management and Policy,No.2024JD09.
文摘BACKGROUND Breast cancer is one of the most common malignant tumors in women worldwide and poses a severe threat to their health.Therefore,this study examined patients who underwent breast cancer surgery,analyzed hospitalization costs and structure,and explored the impact of China Healthcare Security Diagnosis Related Groups(CHS-DRG)management on patient costs.It aimed to provide medical institutions with ways to reduce costs,optimize cost structures,reduce patient burden,and improve service efficiency.AIM To study the CHS-DRG payment system’s impact on breast cancer surgery costs.METHODS Using the CHS-DRG(version 1.1)grouping criteria,4073 patients,who underwent the radical resection of breast malignant tumors from January to December 2023,were included in the JA29 group;1028 patients were part of the CHS-DRG payment system,unlike the rest.Through an independent sample t-test,the length of hospital stay as well as total hospitalization,medicine and consumables,medical,nursing,medical technology,and management expenses were compared.Pearson’s correlation coefficient was used to test the cost correlation.RESULTS In terms of hospitalization expenses,patients in the CHS-DRG payment group had lower medical,nursing,and management expenses than those in the diagnosis-related group(DRG)non-payment group.For patients in the DRG payment group,the factors affecting the total hospitalization cost,in descending order of relevance,were medicine and consumable costs,consumable costs,medicine costs,medical costs,medical technology costs,management costs,nursing costs,and length of hospital stay.For patients in the DRG nonpayment group,the factors affecting the total hospitalization expenses in descending order of relevance were medicines and consumable expenses,consumable expenses,medical technology expenses,the cost of medicines,medical expenses,nursing expenses,length of hospital stay,and management expenses.CONCLUSION The CHS-DRG system can help control and reduce unnecessary medical expenses by controlling medicine costs,medical consumable costs,and the length of hospital stay while ensuring medical safety.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under Grant Number(DGSSR-2023-02-02513).
文摘Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.