Heap bioleaching is one of the most clean and economical processes for recovery of low-grade and complex ores, because the sulfide minerals are natural habitats for acidophiles capable of iron-and sulfur-oxidation. Th...Heap bioleaching is one of the most clean and economical processes for recovery of low-grade and complex ores, because the sulfide minerals are natural habitats for acidophiles capable of iron-and sulfur-oxidation. The most exciting advances in heap bioleaching are occurring in the field of microbiology, especially with the development of advanced molecular biology approaches. These chemolithotrophic microorganisms living in the acid mine environment fix N_2 and CO_2 and obtain energy for growth from soluble ferrous iron and reduced inorganic sulfur compounds during oxidation of sulfide minerals. The ferric iron as oxidant and sulfuric acid are a result of microbial activity and provide favorable conditions for the dissolution of sulfide minerals. Various microbial consortia were applied successfully in commercial bioleaching heaps around the world, and microbial community and activity were adapted related to the local climatic conditions, ore characteristics and engineering configuration. This review focuses on diversity of bioleaching microbes, their role in heap bioleaching processes, their community structure and function in industrial heaps and the relation to the ore characteristics and the engineering configuration, to give implications for optimizing leaching efficiency of heap bioleaching.展开更多
In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties,...In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties, and one natural setting where they arise is as models of reduced words in Coxeter groups. In this paper, we introduce a cyclic version of a heap, which loosely speaking, can be thought of as taking a heap and wrapping it into a cylinder. We call this object a toric heap, because we formalize it as a labeled toric poset, which is a cyclic version of an ordinary poset. Defining the category of toric heaps leads to the notion of certain morphisms such as toric extensions. We study toric heaps in Coxeter theory, because a cyclic shift of a reduced word is simply a conjugate by an initial or terminal generator. As such, we formalize and study a framework that we call cyclic reducibility in Coxeter theory, which is closely related to conjugacy. We introduce what it means for elements to be torically reduced, which is a stronger condition than simply being cyclically reduced. Along the way, we encounter a new class of elements that we call torically fully commutative (TFC), which are those that have a unique cyclic commutativity class, and comprise a strictly bigger class than the cyclically fully commutative (CFC) elements. We prove several cyclic analogues of results on fully commutative (FC) elements due to Stembridge. We conclude with how this framework fits into recent work in Coxeter groups, and we correct a minor flaw in a few recently published theorems.展开更多
A new variant of HEAPSORT is presented in this paper. The algorithm is not an internal sorting algorithm in the strong sense, since extra storage for n integers is necessary. The basic idea of the new algorithm is sim...A new variant of HEAPSORT is presented in this paper. The algorithm is not an internal sorting algorithm in the strong sense, since extra storage for n integers is necessary. The basic idea of the new algorithm is similar to the classical sorting algorithm HEAPSORT, but the algorithm rebuilds the heap in another way. The basic idea of the new algorithm is it uses only one comparison at each node. The new algorithm shift walks down a path in the heap until a leaf is reached. The request of placing the element in the root immediately to its destination is relaxed. The new algorithm requires about n log n - 0.788928n comparisons in the worst case and n log n - n comparisons on the average which is only about 0.4n more than necessary. It beats on average even the clever variants of QUICKSORT, if n is not very small. The difference between the worst case and the best case indicates that there is still room for improvement of the new algorithm by constructing heap more carefully.展开更多
The best algorithms of INSERT and DELETE operations on heap is presented,by which HEAPSORT is improved. Inserting one element into and deleting one element from a heap of n elements spend at most [loglogn] comparisons...The best algorithms of INSERT and DELETE operations on heap is presented,by which HEAPSORT is improved. Inserting one element into and deleting one element from a heap of n elements spend at most [loglogn] comparisons and [logn]comparisons and transfers of element in the worst cases respectively. The improved HEAPSoRT spends n log n + n log logn + O(n) comparisons and element transfers (notswapl) in the worst case. It may be the best HEAPSORT algorithm since the lower bound of sorting algorithm [log nl] n log n + o(n). Especially, in element trallsfer,this is the best result we known so far.展开更多
This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple...This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.展开更多
The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The ...The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The effect of particle size and heap porosity on the capillary process was investigated through a series of column tests. Macropore of the ore heap was identified, and its capillary rise theory analysis was put forward. Two groups of ore particles, mono-size and non-uniform, were selected for the capillary rise test. The result shows that particle size has an inverse effect on the capillary ultimate height, and smaller particles exhibit higher capillary rise. Meanwhile, the poorly graded group exhibits small rise height and velocity, while the capillary rise in the well-graded particles is much greater. The relationship between porosity and fitting parameters of capillary rise was obtained. Low porosity and high surface tension lead to higher capillary height of the fine gradation. Moisture content increases with the capillary rise level going up, the relationship between capillary height and moisture content was obtained.展开更多
The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore st...The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.展开更多
This work presents the results of investigations to develop and implement methods to effectively collect and purify infiltrates from heaps, situated in the region of Alwernia near Cracow, where more than 3 million ton...This work presents the results of investigations to develop and implement methods to effectively collect and purify infiltrates from heaps, situated in the region of Alwernia near Cracow, where more than 3 million tonnes of waste material resulting from the production of chromium compounds have been stored. It describes a system for the protection of groundwater from these infiltrates which contain 50-400 g m-3 Cr6+, as well as the effectiveness of cheap and simple chemical methods to purify these chromic wastewaters. The infiltrate collection system and the most effective method to decrease the concentration of Cr6+ to a level below 0.1 ppm, as required by Polish and European Union regulations, were implemented in the Alwernia Chemical Works S. A. in the years 1998-1999.展开更多
Lipovtsy coal field mine №4 processed north-western reserves of Lipovtsy field in Primorski Krai (Russia). In 1997, the mine was declared unprofitable and was abandoned by natural flooding with no arrangement of mine...Lipovtsy coal field mine №4 processed north-western reserves of Lipovtsy field in Primorski Krai (Russia). In 1997, the mine was declared unprofitable and was abandoned by natural flooding with no arrangement of mine water discharge and in 2005 it was fully flooded. The main sources of pollution in the studied area are spoil heaps (mine wastes), underspoil filtering waters and mine waters which are being discharged on the surface after finishing of “hydraulic funnel” artificial support. The study of technogenic landscape of abandoned mine industrial area showed that its morphologic form is dominated by spoil heaps. Soils located near mine waste body differ from benchmark soils by chemical properties and size distribution. The influence of active hydrochemical mine and drainage water flows is the reason of the above-mentioned variation in soil properties. Results showed that, there exist a high correlation ratios between chemical composition of mine waters and water extracts from soil: Between the alkalinity of mine waters and electrical conductivity of soil water extracts (r = 0.73), between mine water iron content and pH of soil water extract (r = −0.56), between the solid residue of mine waters and electrical conductivity of soil water extracts (r = 0.72), between the mine waters calcium content and electrical conductivity of soil water extracts (r = −0.75), between the alkalinity of mine waters and silicon dioxide content of soil water extracts (r = 0.61), between the mineralization of mine waters and chrome content of soil water extracts (r = 0.73).展开更多
基金funded by the National Natural Science Foundation of China(41401541,51674231)Bureau of International Co-operation,Chinese Academy of Sciences(122111KYSB20150013)
文摘Heap bioleaching is one of the most clean and economical processes for recovery of low-grade and complex ores, because the sulfide minerals are natural habitats for acidophiles capable of iron-and sulfur-oxidation. The most exciting advances in heap bioleaching are occurring in the field of microbiology, especially with the development of advanced molecular biology approaches. These chemolithotrophic microorganisms living in the acid mine environment fix N_2 and CO_2 and obtain energy for growth from soluble ferrous iron and reduced inorganic sulfur compounds during oxidation of sulfide minerals. The ferric iron as oxidant and sulfuric acid are a result of microbial activity and provide favorable conditions for the dissolution of sulfide minerals. Various microbial consortia were applied successfully in commercial bioleaching heaps around the world, and microbial community and activity were adapted related to the local climatic conditions, ore characteristics and engineering configuration. This review focuses on diversity of bioleaching microbes, their role in heap bioleaching processes, their community structure and function in industrial heaps and the relation to the ore characteristics and the engineering configuration, to give implications for optimizing leaching efficiency of heap bioleaching.
文摘In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties, and one natural setting where they arise is as models of reduced words in Coxeter groups. In this paper, we introduce a cyclic version of a heap, which loosely speaking, can be thought of as taking a heap and wrapping it into a cylinder. We call this object a toric heap, because we formalize it as a labeled toric poset, which is a cyclic version of an ordinary poset. Defining the category of toric heaps leads to the notion of certain morphisms such as toric extensions. We study toric heaps in Coxeter theory, because a cyclic shift of a reduced word is simply a conjugate by an initial or terminal generator. As such, we formalize and study a framework that we call cyclic reducibility in Coxeter theory, which is closely related to conjugacy. We introduce what it means for elements to be torically reduced, which is a stronger condition than simply being cyclically reduced. Along the way, we encounter a new class of elements that we call torically fully commutative (TFC), which are those that have a unique cyclic commutativity class, and comprise a strictly bigger class than the cyclically fully commutative (CFC) elements. We prove several cyclic analogues of results on fully commutative (FC) elements due to Stembridge. We conclude with how this framework fits into recent work in Coxeter groups, and we correct a minor flaw in a few recently published theorems.
基金Supported by the Natural Science Foundation of Fujian under Grant No.A0510008.
文摘A new variant of HEAPSORT is presented in this paper. The algorithm is not an internal sorting algorithm in the strong sense, since extra storage for n integers is necessary. The basic idea of the new algorithm is similar to the classical sorting algorithm HEAPSORT, but the algorithm rebuilds the heap in another way. The basic idea of the new algorithm is it uses only one comparison at each node. The new algorithm shift walks down a path in the heap until a leaf is reached. The request of placing the element in the root immediately to its destination is relaxed. The new algorithm requires about n log n - 0.788928n comparisons in the worst case and n log n - n comparisons on the average which is only about 0.4n more than necessary. It beats on average even the clever variants of QUICKSORT, if n is not very small. The difference between the worst case and the best case indicates that there is still room for improvement of the new algorithm by constructing heap more carefully.
文摘The best algorithms of INSERT and DELETE operations on heap is presented,by which HEAPSORT is improved. Inserting one element into and deleting one element from a heap of n elements spend at most [loglogn] comparisons and [logn]comparisons and transfers of element in the worst cases respectively. The improved HEAPSoRT spends n log n + n log logn + O(n) comparisons and element transfers (notswapl) in the worst case. It may be the best HEAPSORT algorithm since the lower bound of sorting algorithm [log nl] n log n + o(n). Especially, in element trallsfer,this is the best result we known so far.
基金supported by Project of Chongqing Ecology and Environment Bureau(2021111)Project of Chongqing Science and Technology Bureau(cstc2022jxjl0005)。
文摘This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.
基金Project(51374035)supported by the National Natural Science Foundation of ChinaProject(201351)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCET-13-0669)supported by Program for New Century Excellent Talents in University,China
文摘The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The effect of particle size and heap porosity on the capillary process was investigated through a series of column tests. Macropore of the ore heap was identified, and its capillary rise theory analysis was put forward. Two groups of ore particles, mono-size and non-uniform, were selected for the capillary rise test. The result shows that particle size has an inverse effect on the capillary ultimate height, and smaller particles exhibit higher capillary rise. Meanwhile, the poorly graded group exhibits small rise height and velocity, while the capillary rise in the well-graded particles is much greater. The relationship between porosity and fitting parameters of capillary rise was obtained. Low porosity and high surface tension lead to higher capillary height of the fine gradation. Moisture content increases with the capillary rise level going up, the relationship between capillary height and moisture content was obtained.
基金Projects (50934002, 51074013, 51104100) supported by the National Natural Science Foundation of China
文摘The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.
文摘This work presents the results of investigations to develop and implement methods to effectively collect and purify infiltrates from heaps, situated in the region of Alwernia near Cracow, where more than 3 million tonnes of waste material resulting from the production of chromium compounds have been stored. It describes a system for the protection of groundwater from these infiltrates which contain 50-400 g m-3 Cr6+, as well as the effectiveness of cheap and simple chemical methods to purify these chromic wastewaters. The infiltrate collection system and the most effective method to decrease the concentration of Cr6+ to a level below 0.1 ppm, as required by Polish and European Union regulations, were implemented in the Alwernia Chemical Works S. A. in the years 1998-1999.
文摘Lipovtsy coal field mine №4 processed north-western reserves of Lipovtsy field in Primorski Krai (Russia). In 1997, the mine was declared unprofitable and was abandoned by natural flooding with no arrangement of mine water discharge and in 2005 it was fully flooded. The main sources of pollution in the studied area are spoil heaps (mine wastes), underspoil filtering waters and mine waters which are being discharged on the surface after finishing of “hydraulic funnel” artificial support. The study of technogenic landscape of abandoned mine industrial area showed that its morphologic form is dominated by spoil heaps. Soils located near mine waste body differ from benchmark soils by chemical properties and size distribution. The influence of active hydrochemical mine and drainage water flows is the reason of the above-mentioned variation in soil properties. Results showed that, there exist a high correlation ratios between chemical composition of mine waters and water extracts from soil: Between the alkalinity of mine waters and electrical conductivity of soil water extracts (r = 0.73), between mine water iron content and pH of soil water extract (r = −0.56), between the solid residue of mine waters and electrical conductivity of soil water extracts (r = 0.72), between the mine waters calcium content and electrical conductivity of soil water extracts (r = −0.75), between the alkalinity of mine waters and silicon dioxide content of soil water extracts (r = 0.61), between the mineralization of mine waters and chrome content of soil water extracts (r = 0.73).